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Abstract

We investigate the consistency strength of the forcing axiom for Σ1
3 formulas,

for various classes of forcings. We review that the consistency strength of
Σ1

3-absoluteness for all set forcing or even just for ω1-preserving forcing is
that of a reflecting cardinal. To get the same strength from the forcing
axiom restricted to proper forcing, one can add the hypotheses that ω1 is
inaccessible to reals. Then we investigate the strength of the forcing axiom
restricted to ccc forcing notions under this additional hypothesis; to gauge it
we introduce a weak version of a weak compact cardinal, namely, a lightface
Σ1

2-indescribable cardinal.
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1 Preliminary facts

This section contains some definitions, well known facts and basic theorems
which we will use throughout the present paper.

First, we take a little time to fix our notation (we hope to include all
possible sources of confusion). For a structure M = 〈M,∈;P0, . . . , Pk〉, LM
denotes the language L = {∈, P0, . . . , Pk}. LMX denotes the same language
with constants for all the elements of X. We write M ≺ N to denote
elementarity (i.e. M and N have the same theory in LMM ), and we write
π :M→Σω N to express π is an elementary embedding (i.e. 〈ran(π), π′′ ∈
; π′′P0, . . . , π

′′Pk〉 ≺ N ). For transitive models, we call the least ordinal
α ∈M such that π(α) > α the critical point of π, and denote it by crit(π).
For a structure N = 〈N,E, . . .〉 such that E is extensional and well-founded
(and, in the case of a class sized structure, set-like), we denote its transitive
collapse (that is, the unique structure 〈M,∈, . . .〉 isomorphic to N and such
that M is transitive) by tcoll(N ). By (φ)M we mean the formula φ holds
relativized to a (possibly class-sized) structure M and by tM we mean the
interpretation of a term t as from the viewpoint ofM. When we talk about
structures M = 〈M,∈;P0, . . . , Pk〉, we sometimes omit listing the ∈ as a
predicate. When we use notation that is defined for structures in a context
when we talk about sets M , it is implied we mean the structure 〈M,∈〉.

We denote the usual Zermelo-Fraenkel axioms by ZF , and that theory
with AC (the axiom of choice) added by ZFC. ZF− and ZFC− denote the
corresponding theories with the power set axiom deleted.

When we talk about Skolem functions Fφ for a (possibly class-sized) struc-
ture M, we consider M to be equipped with a well-ordering <M. Then, if
φ(x0, x1) is a formula of LM with two free variables, for p ∈ M , we define
Fφ(p) to be the <M-least y ∈M such that M � φ(y, p) if such y exists, and
to be ∅ otherwise. For X ⊆ M , we denote by hMΣω(X) the Skolem hull of X
in N , that is the smallest (in the sense of ⊆) set Y ⊆M s.t. Y ⊇ X that is
closed under all Skolem functions Fφ, for φ a formula of LM.

We use the familiar Σk,Πk,∆k notation for the classes formulas that can
be written with k blocks of equal quantifiers starting with ∃ or ∀ and for
the intersection of these first two classes, respectively. We shall give a more
thorough review of the analytical hierarchy in section 1.3; in section 5.1 we
quickly review the general Σk

n hierarchies of higher order formulas over a
structure.

We write Lim, Card, Reg for the class of limit ordinals, cardinals and
regular cardinals respectively. For a set x, |x| is its cardinality, and we
sometimes write x . y to mean that |x| < |y|. TC(x) denotes the transitive
closure of x. For any cardinal κ, let Hκ denote the set of all x such that
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TC(x) has size less than κ (i.e., the Hκ hierarchy is continuously defined also
at singular cardinals). HC denotes Hω1 , the set of hereditarily countable
sets.

As far as forcing is concerned, we sometimes write V P for a generic ex-
tension V [G], where G is P -generic over V , if the particular G concerned
is of no importance. We write dots over names (e.g. q̇) and q̇[G] for the
interpretation of the name q̇ by a generic G. For sets a in the ground model
we write ǎ for the “standard name” for a.

1.1 General set theory

1.1 Definition. 1. C ⊂ [A]ω is called cub if, and only if, there are predi-
cates P1, . . . , Pk ⊂ A such that

C = {X ∈ [A]ω | 〈X,P1, . . . , Pk〉 ≺ 〈A,P1, . . . , Pk〉}

2. S ⊂ [A]ω is called stationary if, and only if,

for all cub sets C ⊂ [A]ω, S ∩ C 6= ∅

1.2 Fact. Let N = 〈N,R0, . . . Rk〉, X ∈ Hκ and X ⊆ N . Then there exists
a transitive M ∈ Hκ s.t. X ⊆ M together with R′0, . . . R

′
k ⊆ M , and an

elementary embedding i : 〈M,R′0, . . . R
′
k〉 →Σω 〈N,R0, . . . Rk〉 s.t. i is the

identity on X.

Proof. First observe that since X ∈ Hκ, also TC(X) ∈ Hκ, whence we
can assume X to be transitive. Now start by taking the Skolem-hull (with
respect to the language where the additional predicates have been added):
let M̄ := hNΣω(X). M̄ has size less than κ. Set M := tcoll(M̄), the transitive
collapse of M̄ . Being transitive and of size less than κ, M ∈ Hκ. Let i be
the inverse of the collapsing map (the new predicates are just the pullbacks
of the original predicates). As X ⊆ M̄ was transitive, i is the identity on
X.

1.3 Fact. If N is transitive and λ+ 1 ⊆M ≺ N , then (Hλ+)M is transitive.

Proof. Let x ∈ (Hλ+)M be arbitrary, we show x ⊆ M . M �“∃f : λ �
TC(x)”, and so by elementarity, for some f ∈ M , N �“f : λ � TC(x)”.
Now for arbitrary y ∈ x, we have y = f(ξ) for some ξ ∈ λ, while λ ⊆ M .
It is easily checked that f, ξ ∈ M by elementarity implies f(ξ) ∈ M , so
y ∈M .

1.4 Corollary. Let A be any set of ordinals, κ a successor cardinal. Then
C := { α < κ | Lα[A] ≺ Lκ[A] } is cub in κ.
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Proof. For ξ < κ, let χ(ξ) denote the least ordinal such that Skolem functions
for Lκ[A] on Lξ[A] have values in Lχ(ξ)[A]. Then χ : κ→ κ and C is precisely
the set of closure points of χ, hence cub.

1.5 Fact. If M � ZF− is transitive, π : M →Σω N an elementary embedding
with critical point α, then α ∈ RegM and π � Hα

M = id.

Proof. Assume M thinks α is singular; then there is a function f in M , with
domain an ordinal below α and values below α whose range is cofinal in
α. But as all these ordinals are not moved by π, π(f) = f and thus α =
sup(ran(f)) = sup(ran(π(f))) = π(sup(ran(f))) = π(α), contradiction. As
π � α = id, α ⊆ ran(π). By hypothesis ran(π) ≺ N , we can apply 1.3:
for each λ < α, (Hλ+)ran(π) is transitive. So (Hπ(α))

ran(π) = π′′(Hα)M (as
the union of these transitive sets) is seen to be transitive. Note that as
the transitive collapse of any set A is uniquely defined as the transitive set
isomorphic to A, we have that M must be the transitive collapse of ran(π)
and π must be the inverse of the collapsing map. As the collapsing map is
just the identity on any transitive set, π is the identity on (Hα)M .

1.6 Fact. Let M = 〈M,R1, . . . , Rk〉, N = 〈N,S1, . . . , Sr〉, be models such
that k ≤ r, Ri has the same arity as Si for i ≤ k, andM is countable. Then
the statement

∃π,∃Rk+1, . . . , Rr π : 〈M,R1, . . . , Rr〉 →Σω 〈N,S1, . . . , Sr〉 (1)

is absolute for transitive models U of ZF− such that U contains both N and
M and U �M∼= ω.

Proof. Let m : ω → M be an enumeration of M , (φi)i∈ω an enumeration
of formulas of the language of N . Let γ : ω → ω, δ : ω → <ωω be such
that together, they enumerate all formulas of the language LNM (the language
of N with constants for all the elements of M) in the following sense: for
all n, ran(δ(n)) ⊆ n, the number of free variables of φγ(n) is no larger than
dom(δ(n)), and γ and δ are onto in the sense that φγ(n)(m(s(0)), . . . ,m(s(l))),
for s = δ(n) and l = lh(s) − 1, runs through all formulas of LNM as n runs
through ω. Think of the elementary embedding as an interpretation of the
constant symbols of LNM .

We inductively define a tree T searching for the embedding and the new
predicates. Let Mk denote the set {m(0), . . . ,m(k − 1)}. We let f ∈ Tn+1,
the n+ 1-th level of T , if and only if f : n+ 1→ N such that

• f � n ∈ Tn

• f ◦m−1 : 〈Mn+1;R1, . . . , Rk〉 → 〈N ;S1, . . . , Sk〉 is a homomorphism
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• setting s = δ(n) and l = lh(s)−1, ifN � ∃xφγ(n)(x, f(s(0)), . . . , f(s(l)))
then f(n) is such that φγ(n)(f(n), f(s(0)), . . . , f(s(l))). Otherwise, f(n)
is allowed to be an arbitrary element of N .

If (fi)i∈ω is an infinite branch through T , π := (
⋃
i∈ω fi)◦m−1 is an elementary

embedding of 〈M,R1, . . . , Rr〉 into N , where the additional predicates are
obtained by taking the (componentwise) pre-image of the predicates of N
under π. On the other hand, any such relations together with an embedding
define an infinite branch through T . So (1) is equivalent to the statement

⊇ is not well-founded on T (2)

Any U as in the hypothesis contains T , whose definition is ∆1 and thus
absolute. Then by juggling infinite branches and ranking functions for T , (2)
is seen to be absolute.

1.2 Forcing

This section reviews the basic properties of some well-known forcing notions
that are used in this paper.

General forcing facts

We use the largely standardized forcing notation as developed for partial
orders; we shall take for granted basic facts about forcing and finite iterations
as found in texts such as [Kun80]. We shall only venture under the hood of
the forcing machinery on one occasion, namely to describe what is known
as universality of the Lévy-Collapse (corollary 1.30). To this end, we repeat
some basic facts. A proof of the next fact can be found in [Kun80, p. 220f.]

1.7 Definition. Let P,Q be p.o.’s. A map i : P → Q is called a complete
embedding if i is order-preserving and

1. ∀p, q ∈ P i(p)‖i(q) ⇒ p‖q

2. ∀q ∈ Q ∃p0 ∈ P s.t. ∀p ∈ P p ≤ p0 ⇒ i(p)‖q

A map i : P → Q is called a dense embedding if it is order preserving
and i′′P is dense in Q. Let ∼ be the least equivalence relation of partially
ordered sets extending the relation “there exists a dense embedding from
P into Q”. Equivalently, P ∼ Q if r.o.(P ) and r.o.(Q) are the same (up
to isomorphism) i.e. they are canonically associated with the same Boolean
algebra (see [II,3.3, p.62][Kun80] or [Jec78, lemma 17.2, p.152]). If P ∼ Q,
they are called equivalent.
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1.8 Fact. 1. Let i : P → Q be a complete embedding. Then if H is
Q-generic, G := (i−1)′′H is P -generic and V [G] ⊆ V [H].

2. Let d : P → Q be a dense embedding. Then not only is d complete
and the above holds, but for any P -generic G, H := {q ∈ Q | ∃p ∈
P d(p) ≤ q} is Q-generic and V [G] = V [H]. If P ∼ Q, P and Q yield
the same extensions and a generic for either can be used to construct
a generic for the other.

1.9 Fact. Suppose P is a p.o., Q̇ a P -name, P“Q̇ is a p.o.” and M a
transitive model of ZF (and let pi denote the canonical projection to the
i-th coordinate). Then:

1. If I is generic for P ∗ Q̇ over M , G := {p|∃q̇(p, q̇) ∈ I} is P -generic over
M , H := I[G] is Q̇[G]-generic over M [G] and M [I] = M [G][H].

2. If G is P -generic over M and H is Q̇[G]-generic over M [G],

G ∗H := {(p, q̇) ∈ P ∗ Q̇| p ∈ G ∧ q̇[G] ∈ H }

is P ∗ Q̇-generic over M and M [G ∗H] = M [G][H].

Moreover, iP : P → P ∗ Q̇, defined by p 7→ (p, 1̇Q) is a complete embedding
of P into P ∗ Q̇. For Q ∈ M , all of the above holds for P × Q, G × H
and H := {q|∃p(p, q) ∈ I}, and iQ (defined in complete analogy to iP ) is a
complete embedding.

Almost disjoint coding

Let α a regular cardinal, β > α some ordinal. Let A = (aξ)ξ<β be a family
of unbounded subsets of α such that for ξ 6= ξ′ < β, |aξ ∩ aξ′| < α. This is
called an almost disjoint (or a.d.) family on α. Further, let B be any subset
of β. Using A we can force to add a subset A of α, such that A codes B in
the following sense:

B = {ξ < β| |A ∩ aξ| < α} (3)

We shall call this forcing PA,B, the almost disjoint coding of B using A. Of
course this method of adding a set coding B depends on the existence of an
appropriate a.d. family. For basic results about constructing a.d. families,
see [Kun80, p. 47]. We will use the easy facts that there always exists an a.d.
family on α of size α+ (by a maximality argument using Zorn’s lemma), and
that there is an a.d. family on ω of size 2ω (just take sets of code numbers of
finite strings approximating a real - the same works with ω replaced by some
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strong limit cardinal). We shall use the notation of the preceding paragraph
throughout this section without repeating the conditions imposed on, e.g., α
and β. For the moment, let A � q denote {aξ | ξ ∈ q}.

1.10 Definition. Almost Disjoint Coding. Define

PA,B := [α]<α × [B]<α

ordered by

(p, q) ≤ (p̄, q̄) ⇐⇒ p end-extends p̄, q ⊇ q̄, and (p \ p̄) ∩
⋃
A � q̄ = ∅

The forcing consists of pairs, the first part of which is a an approximation
of the set A to be added, the second part indexes the aξ we wish to avoid by
further approximations. We must now show that the generic has the property
promised in (3).

1.11 Lemma. For each σ ∈ B, the set Dσ := {(p, q) ∈ PA,B | σ ∈ q} is
dense in PA,B.

Proof. Given (p0, q0), just extend it to (p0, q0 ∪ {σ}) to hit Dσ.

1.12 Lemma. For each ρ < α, σ ∈ (β −B), the set

Dρ,σ := {(p, q) ∈ PA,B | p ∩ aσ has order type at least ρ}

is dense in PA,B.

Proof. Let (p0, q0) be a condition, ρ and σ given as above. Look at S :=
aσ −

⋃
A � q0 = aσ − [

⋃
ξ∈q0(aσ ∩ aξ)]. As σ 6∈ B, for ξ ∈ q0, aσ ∩ aξ . α.

Thus S is obtained by taking away the union of less then α sets of size less
then α from a set of size α, and thus has size α, by regularity of α. Add
a subset of S of order type ρ to p0 and call the set so obtained p1. As we
have extended inside aσ, aσ ∩ p1 will have the desired order type, and as we
have avoided all the aξ indexed by q0, (p1, q0) is a condition stronger than
(p0, q0).

Now let G be generic for PA,B, and let A :=
⋃
{p | (p, q) ∈ G, some q}.

As G meets all of the above dense sets, A codes B in the sense of (3).

1.13 Fact. PA,B is α-closed.

Proof. Let ρ < α, (pξ, qξ)ξ<ρ a decreasing sequence of conditions. Consider
p′ and q′, the union of the first and second parts of the conditions in this
sequence, respectively. (p′, q′) is a condition extending the conditions of the
sequence: let ξ ∈ qλ, λ < ρ. Then p′ ∩ aξ = pλ ∩ aξ. So (p′, q′) ≤ (pλ, qλ).
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1.14 Fact. PA,B is ([α]<α)-linked. If [α]<α = α, PA,B is α-centered.

Proof. Recall a forcing P is called λ-centered if there is f : P −→ λ s.t.
∀ξ < λ, and ∀W ∈ [f−1(ξ)]<λ, there exists

∧
W , a weakest condition stronger

than all the conditions in W . A forcing is λ-linked if there is such a function
s.t. if f(p) = f(p′), p and p′ are compatible. If [α]<α = α, let f : PA,B −→
[α]<α ∼= α be the projection to the first part. For a set of conditions W . α
with the same first part p0, (p0,

⋃
(p,q)∈W q) is

∧
W . If [α]<α > α, we can’t

find
∧
W for W ∼= [α]<α, but PA,B will at least be linked, as conditions with

the same first part are compatible.

Note that λ-centeredness implies the λ-cc, as any two conditions with the
same image under f must be compatible (centered implies linked). So if α is
a strong limit (or ω), PA,B has the α+-cc

Another kind of almost disjoint coding

We have seen that by forcing with PA,B, we can code some given object of
size 2ω in the ground model by a single, generic real. Basically, we could use
this forcing to code a function f : 2ω → 2ω. For example, we could use a
canonical bijection g : 2ω × 2ω → 2ω and code the graph of f into a set of
reals B before forcing with PA,B.

What if we want to code a function f : 2ω → 2ω into a real A such that
for any model M with sufficient closure properties and containing A and A,
for any real r ∈ M , we also have f(r) ∈ M? That is, we want to make sure
that f(r) can be decoded inside M from A. Using method described above,
this will in general not be the case.

We will use a special almost disjoint family. Fix some arithmetical enu-
meration (sn)n∈ω of <ωω, and some arithmetical partition (Hi)i∈ω of ω, where
each Hi is infinite. For r ∈ 2ω, i ∈ ω, let

air := {n ∈ ω | r � lh(sn) = sn ∧ lh(sn) ∈ Hi}, and
ar :=

⋃
i∈ω a

i
r = {n ∈ ω | r � lh(sn) = sn}

Clearly, {air | r ∈ 2ω, i ∈ ω} is an a.d.-family: let (r, i) 6= (s, j) ∈ 2ω × ω. If
i 6= j, air ∩ ajs = ∅. Otherwise s 6= r. Note that air ⊆ ar, a

j
s ⊆ as. Assume

k0 ∈ r∆s; then for all k ≥ k0, s � k 6= r � k, whence air∩ajs ⊆ ar∩as can only
contain indices of sequences with length shorter than k0 and hence must be
finite.

1.15 Definition. Let f : A→ 2ω be a function, A ⊆ 2ω. Define Pf

Pf := <ωω × [
⋃
r∈A

({r} × f(r))]<ω,
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ordered by

(s, g) ≤ (t, h)⇔ s ⊇ t and for all (r, i) ∈ h, s \ t ∩ air = ∅

The first component of a condition should be thought of as a finite ap-
proximation to the generic real; the second component contains pairs (r, i)
indexing the sets air that must be avoided by any stronger approximation.

For any two reals r, s define

r � s := { i ∈ ω | s ∩ air is finite }

It remains to check the forcing does what was promised and behaves nicely.

1.16 Fact. If B =
⋃
{p|∃q(p, q) ∈ G} for G that is Pf -generic, then for all

r ∈ A, f(r) = r �B.

This fact is an immediate consequence of the following two lemmas.

1.17 Lemma. For each (r, i) ∈ 2ω×ω such that i 6∈ f(r) and for each n ∈ ω,
the set D := {(p, h) ∈ Pf | (p ∩ air) \ n 6= ∅} is dense in Pf .

Proof. Like lemma 1.12. Let (p, h) be arbitrary. As i 6∈ f(r), certainly
(r, i) 6∈ h; so air \

⋃
(s,j)∈h a

j
s must be infinite, as these are almost disjoint

subsets of ω. So, picking k > n in that latter set, (p ∪ {k}, h) is a condition
in D extending (p, h).

1.18 Lemma. For each r ∈ 2ω and each i ∈ f(r), the set D := {(p, h) ∈
Pf | (r, i) ∈ h} is dense in Pf .

Proof. For any condition (p, h) and any pair (r, i) as above, (p, h ∪ {(r, i)})
is a condition extending (p, h).

1.19 Fact. Pf is ω-centered (and thus has the ccc).

Proof. Again, let f : Pf → <ωω ∼= ω be the projection to the first coordinate.
If (pi, hi), for i ∈ k, are conditions with the same first component, indeed
(p0,

⋃
i∈k hi) is also a condition.

Shooting a club through a stationary set

Any superset of a cub set is stationary, but not necessarily all stationary sets
are obtained in this way: if cf(κ) > ω1, the set of ordinals below κ with
uncountable cofinality is stationary; it cannot contain a cub subset as any
such set must have points of cofinality ω. For ω1, the situation is different:
we shall show that for any stationary subset S of ω1, you can force to add a
cub subset of S. If S does not contain a cub subset, ω1−S is also stationary,
but ceases to be in the extension - so the forcing won’t preserve stationary
subsets of ω1. As we shall see, it does preserve ω1.
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1.20 Definition. Adding a club. Let S be a stationary subset of ω1.
Define

P := {s ⊆ S | s is closed and bounded in κ },
ordered by

s ≤ t⇔ t = s ∩ (
⋃

t).

In short, conditions should be thought of as closed initial segments of a
cub subset of S to be added, ordered by end-extension.

1.21 Fact. If G is P -generic,
⋃
G is a cub subset of S.

Proof. As, for any ξ < κ, the set Dξ := {s ∈ P | ξ < sup(s)} is dense,
⋃
G

is unbounded in ω1. If γ is a limit point of
⋃
G, take some s ∈ G such that

sup(s) > γ. As (
⋃
G) ∩ sup(s) = s, and s is closed, it must be the case that

γ ∈
⋃
G, so

⋃
G is closed.

1.22 Fact. P is ω1-distributive.

Proof. Why is P not σ-closed? Because if we let γ be a limit point of S that
is not contained in S, we can choose a sequence of conditions such that any
candidate for a condition containing all of them as subsets must either fail
to be closed or must contain γ 6∈ S.

With this in mind, given a sequence (Dn)n<ω of dense subsets of P and
a condition q0, we shall construct a descending chain of conditions (pn)n<ω
below q0 with sufficient care so that at the limit, we can find a condition
extending what has previously been chosen.

To this end, we build a chain of models (Mξ)ξ∈ω1 : for successor stages
η = ξ + 1 for ξ < ω1, choose Mη s.t.

〈Mη, p0, P, (Dn)n∈ω〉 ≺ 〈Hω1 , p0, P, (Dn)n∈ω〉, (4)

and ξ ∪Mξ ⊆Mη.

At limit stages η ∈ ω1 ∩ Lim, take unions:

Mλ =
⋃
ξ<λMξ

Thus, (4) will hold for all η < ω1. Note that by construction the set

C := {
⋃

(Mξ ∩On) | ξ < ω1}
is cub in ω1. So we can choose γ ∈ S∩C. Let δ be such that

⋃
(Mδ∩On) = γ.

Then, for each n ∈ ω we can choose γn ∈ Mδ such that
⋃
n∈ω γn = γ. Now

by (4), we have that

Mδ � “∀n ∈ ω Dn is dense in P”,
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and for each n ∈ ω,

Mδ � “{p ∈ P | sup(p) > γn} is dense in P”.

So we can choose a sequence of conditions, starting with p0, such that for
each n ∈ ω − {0},

pn+1 ≤ pn,
pn+1 ∈ Dn ∩Mδ, and
sup(pn+1) > γn.

Finally, we set pω := (
⋃
n∈ω pn)∪{γ}. This pω is a closed and thus a condition,

and clearly pω ∈
⋂
n∈ωDn, pω ≤ p0.

1.23 Corollary. P does not collapse ω1.

Collapsing orders

1.24 Definition. For S ⊆ On, γ regular, define

Coll(γ, S) := {f | f is a function, dom(f) ∈ [S × γ]<γ and
∀(ξ, η) ∈ S × γ f(ξ, η) < ξ },

ordered by inclusion. Coll(γ, {κ}) is usually called the Lévy Collapse of κ
onto γ, while Coll(γ, κ) is called the gentle Lévy Collapse of κ (onto γ+).

1.25 Fact. 1. Coll(γ,S) ∀ξ ∈ Š ξ ∼= γ

2. Coll(γ, S) is γ-closed.

3. If κ<γ = κ, Coll(γ, {κ}) has the κ+-cc

4. Let κ be regular and greater than γ, and assume ∀ξ < κ, ξ<γ < κ.
Then Coll(γ, κ) has the κ-cc

Proof. 1. Obviously, for any ξ ∈ S and any χ ∈ ξ, the set of conditions q
where for some η ∈ γ, p(ξ, η) = χ is dense. Thus, if G is the generic,
F :=

⋃
G is a function F : S × γ → S such that for each ξ ∈ S, the

function η 7→ F (ξ, η) is a surjection from γ to ξ.

2. Clear, as the union of less than γ many functions of size less than γ
has itself size less than γ by regularity.

3. Clear, as Coll(γ, {κ}) ⊆ [{κ} × γ × κ]<γ ∼= κ<γ.
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4. By way of contradiction, let A be an antichain of Coll(γ, κ) of size κ.
The unwieldy hypothesis that ∀ξ < κ ξ<γ < κ (and regularity of κ)
allows us to use the ∆-System-Lemma for {dom(p)|p ∈ A}: we can find
a root r ∈ [κ]<γ and A′ ⊆ A of size κ such that for any two distinct
p, q ∈ A′, dom(p) ∩ dom(q) = r. But as r must be bounded in κ, say,
by κ0, there are only κ<γ0 < κ possibilities for p � r, p ∈ A′. Thus
(once more by regularity of κ) κ many p ∈ A′ agree on r and thus, as
their domains are disjoint outside r, they must be be compatible, in
contradiction to the fact that A is an antichain.

A simple proof of the following simple fact is strangely absent from the
usual texts on forcing, but one is included in [Kan97, p. 129]. More general
theorems can be proved along similar lines, both about the Lévy-Collapse
(see [Jec78, p. 280]) and about weak homogeneity (see [Jec78, p. 270]). The
class of standard names for P is defined by induction: a P -name q is a
standard name exactly if for all x, y s.t. (x, y) ∈ q, x is a standard name and
y = 1P , the maximal element of P . Every set a in the ground model has a
standard name ǎ, and for any P -generic G, ǎ[G] = a.

1.26 Fact. If P is weakly homogeneous, that is, if for any p, q ∈ P there is
an automorphism e : P → P such that i(p)‖q, then for any formula φ of the
forcing language mentioning only standard names, and for any p ∈ P ,

p P φ ⇐⇒ P φ.

1.27 Fact. The Lévy-Collapse is weakly homogeneous.

Proof. Let p, q ∈ Coll(λ, S). We need to find a map e which is an auto-
morphism of this collapsing order such that e(p) and q are compatible. Pick
any bijection f : λ → λ such that for all (χ, ξ) ∈ dom(p) and all chi′ ∈ S,
(χ′, f(ξ)) 6∈ dom(q) (this is possible as dom(p), dom(q) . λ). This induces
an automorphism e: we define e(p) : λ× S →

⋃
S to be such that

e(p)(χ, ξ) = p(χ, f(ξ))

As e can be viewed as taking images under the bijection id × f × id on
S×λ×

⋃
S, e clearly preserves⊆ on P(S×λ×

⋃
S)). Clearly, e : Coll(λ, S)→

Coll(λ, S) is an automorphism of Coll(λ, S) and dom(e(p))∩dom(q) = ∅.

The Lévy-Collapse is very easily decomposable as a product, and the
projections and complete embeddings take a very simple form:

12



1.28 Fact. Let S = R ∪ T and R ∩ T = ∅. Then the map i : 〈p, q〉 7→
p ∪ q is an isomorphism from Coll(λ,R) × Coll(λ, T ) onto Coll(λ, S) and
Coll(λ, T )V = Coll(λ, T )V [G], for any G that is Coll(λ, S)-generic over V .

Proof. That the mapping i is a bijection and order-preserving is obvious.
The second fact holds since by λ-closedness of the first Lévy-Collapse, no
new subsets of S × λ×

⋃
S of size less than λ are added by G.

One of properties of the Lévy-Collapse, its so-called universality, can be
loosely described thus: The Lévy-Collapse forces every upwards absolute
formula that can be forced by a comparatively small forcing, or, in other
words, the Lévy-Collapse adds a generic for every small forcing.

1.29 Fact. Let P be a separative p.o. and α uncountable such that |P | ≤ α
but P ω ∼= α. Then there is a dense subset of Coll(ω, {α}) which can be
densely embedded into P.

Proof. First, observe that below every condition, we can find an antichain of
size α. Otherwise, if there were some q ∈ P such that the α-cc holds below
q, then for some regular β ≤ α, even the β-cc holds below q. (We tacitly use
a well-known fact about the chain condition see [Jec78, p. 157]. It would,
on the other hand, be of no harm to prove the present fact only for regular
α.) Let ḟ be a P -name s.t. P ḟ : ω̌ � β̌. The set of conditions below
p which decide ḟ(ň) with different value is clearly an antichain; if for each
n, this chain is small, i.e. the set An := {ξ < α|∃q ≤ p s.t. q  ḟ = ξ̌} is
bounded in β, by regularity of β, ḟ will be forced by q to be bounded in β,
a contradiction.

The embedding - call it i - will be defined on <ωα, which is of course
dense in Coll(ω, {α}). Fix a name ġ such that P ġ : ω̌ � Ġ. Now we define
i inductively on the length of conditions. Of course, the empty sequence
1Coll(ω,{α}) can be mapped simply to 1P . Now let’s assume we have defined

i on nα. For each q ∈ nα, let Ai(q) := {ai(q)ξ |ξ < α} be a maximal pairwise
incompatible subset of {p ∈ P |p ≤ i(q)}, of size α, and such that each element
of Ai(q) decide the value of ġ(ň) (enlarge an antichain below i(q) until it is
maximal and refine it to decide the values of ġ). Then for p ∈ n+1α, let

i(p) := a
i(p�n)
p(n) .

It is obvious from the construction that i is injective and i and i−1 are
order-preserving. It thus remains to show that i′′(<ωα) is dense in P . So take
any p ∈ P . As p  p̌ ∈ Ġ, for some n and some p′ ≤ p, p′  ġ(ň) = p̌. Of
course, p′ must be compatible to some element a of A∅; then again, to some
element of Aa, as this is a maximal antichain below a; going on like this, p′

has to be compatible with one of the elements, say a′, of Aā, for some ā. As
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a′ itself also decides the value of ġ(ň), it must agree with p′ on this value,
whence a′  p̌ ∈ Ġ. But then, by separativity of P , even a′ ≤ p.

1.30 Corollary. Universality. Let P be a p.o. and α regular such that
|P | < α. Then there exists a p.o. Q and a complete embedding i : P → Q
where Q ∼ Coll(ω, {α}), i.e. Q is equivalent to the Lévy-Collapse of α onto
ω.

Proof. Consider Q := P × Coll(ω, {α}). By the previous fact, there exists
a dense embedding d : <ωα → Q, and <ωα is dense in Coll(ω, {α}). So
obviously Q ∼ Coll(ω, {α}), and p0 : P → Q, the canonical projection to
the first coordinate, is a complete embedding.

1.3 Reals

To make notation easier, for this section, let variables m,n always denote
natural numbers, and variables s, w elements of Seq := <ωω. By reals we
usually mean members of 2ω, and we will issue a warning before we switch
to ωω. Fix a bijection Γ : ω2 −→ ω, which is arithmetical, and an arithmeti-
cal enumeration of <ωω, (sn)n∈ω. Thus we are allowed to talk about finite
sequences of natural numbers as if they were natural numbers. We denote
the length of an ω-sequence s by lh(s).

We shall need a normal form for Σ1
n relations, which we can easily state as

a Definition 1.31. Π1
n, ∆1

n and boldface and lightface versions of the hierarchy
are then defined as usual (see, e.g., [Jec78, p. 500] for a survey of descriptive
set theory and [Jec78, p. 509ff.] for definitions compatible with the one given
here). By ∆1

0(a1, . . . , al) or arithmetical in a1, . . . , al, we mean definable
in the model 〈ω, a1, . . . , al,∈〉. When we talk about trees, for simplicity of
notation, consider them to be ordered by reverse inclusion. Thus our trees
will grow downward, as they do in Israel. An infinite branch through a tree
is an infinite descending chain of nodes. By a ranking function, we mean an
order-preserving function into the ordinals always taking the least possible
value.

1.31 Definition. A k-ary relation on ωω is Σ1
n(a1, . . . , al) exactly if it can

be written in the following form:

(x1, . . . , xk) ∈ A ⇐⇒ ∃ z1 ∈ ωω . . . Qzn ∈ ωω︸ ︷︷ ︸ B(x1, . . . , xk, z1, . . . , zn),

n blocks of quantifiers

where each block consists exclusively of quantifiers of one type, either ∀ or
∃ (we have written Q for the last quantifier, ∀ for even n, ∃ for odd n) and
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where B(x, z1, . . . , zn) is a relation arithmetical in a1, . . . , al. Moreover for
n > 0, we can demand that B be equivalent to the following statement if n
is even and equivalent to the negation if n is odd:

∃m ∈ ω (x1 � m, . . . , xk � m, z1 � m, . . . , zn � m) 6∈ T ,

for a tree T on Seqk+n, arithmetical in a1, . . . , al.

Hereditarily countable sets and reals

1.32 Definition. We say that r ∈ 2ω codes x ∈ HC if, and only if, the
relation Er := {(m,n) ∈ ω × ω | Γ(m,n) ∈ r} is well-founded, extensional
and the Mostowski-collapse of Er is just TC( {x} ). We say that r codes x
via g : TC( {x} ) −→ ω if all of the above holds and g is the inverse of the

collapsing map. We write r0

r∼= r1, if Er0 and Er1 are extensional and Er ⊆
ω×ω is the graph of a partial function fr, s.t. ∀m,n ∈ dom(fr) [mEr0n ⇐⇒
fr(m)Er1fr(n)]. Denote the m with no successors in Er by top(r) (if r codes
x via g, g(x) = top(r)). Let field(r) := dom(Er) ∪ range(Er), and r t s :=
{Γ(2n, 2m)|nErm} ∪ {Γ(3n, 3m)|nEsm}. For m ∈ field(r), let

tcr(m) := {n | ∃k ∃s ∈ ωk+1 ∧ s(0) = n ∧ s(k) = m ∧ ∀l < k s(l)Ers(l + 1)}

Observe all the notions presented are arithmetical (with real parameters).
Of course, for any set x ∈ HC, we can find a real rx coding x. Just choose

some g : TC({x})
1−1−→ ω and let rx := Γ′′Ex, where 〈TC({x}),∈〉

g∼= 〈ω,Ex〉.
Assume r0, r1 code p0, p1. “p0 ∈ p1” is ∆1

1(r0, r1):

∃r r0

r∼= r1 ∧ field(r0) ⊆ dom(fr) ∧ fr(top(r0))Er1top(r1)

∀s∀t [r0 t r1

s∼= t ∧ field(r0 t r1) = dom(fs) ∧ ran(fs) = field(t)]⇒
⇒ fs(2

top(r0))Etfs(3
top(r1))

“p0 = p1” is also ∆1
1(r0, r1):

∃r r0

r∼= r1 ∧ field(r0) ⊆ dom(fr) ∧ fr(top(r0)) = top(r1)

∀s∀t [r0 t r1

s∼= t ∧ field(r0 t r1) = dom(fs) ∧ ran(fs) = field(t)]⇒
⇒ fs(2

top(r0)) = fs(3
top(r1))

Moreover, for variables xi ranging over TC( {pi} ), respectively (i ∈ 2),
we can replace them by variables ranging over ω and express “x0 ∈ x1” and
“x0 = x1” using the formulas above, with xi instead of top(ri) and tcr0(x0)
instead of field(r0).
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1.33 Fact. Let Ψ(x0, . . . , xk) be a statement in the language of set theory,
(p0, . . . , pk) ∈ HC. Then there exists a formula Φ(x0, . . . , xk) s.t. for any
reals r0, . . . rk coding p0, . . . , pk,

1. ( 〈HC,∈〉 � Ψ(p1, . . . , pk) ) ⇐⇒ Φ(r1, . . . , rk)

2. If Ψ(p1, . . . , pk) is Σn, Φ(r1, . . . , rk) is Σ1
n+1

If Ψ(p1, . . . , pk) is Πn, Φ(r1, . . . , rk) is Π1
n+1.

Proof. Let Ψ = Ψ(x0, . . . , xk), p0, . . . , pk, r0, . . . rk be given as above. The
proof goes by induction on formula complexity. For the ∆0 case, replace
atomic formulas in the way indicated in the preceding discussion. From
what has been said there, 1. is immediate. By shifting quantifiers to the
front, we see we have a ∆1

1 statement. Now assume Ψ is Σn+1 and we can
already convert Πn statements. For simplicity, assume Ψ(p) = ∃xΘ(x, p),
where Θ(x, p) is Πn. We want to express

∃x ∈ HC HC � Θ(x, p). (5)

By induction, HC � Θ(x, p) converts to a Π1
n+1 formula. We see that (5) is

equivalent to saying “∃R s.t. R codes an extensional, well-founded relation
and Θ̄(R, rp) holds”, where Θ̄ is Π1

n+1.
“R ∈ 2ω codes a well founded relation” ⇐⇒ “there is no R′ ∈ 2ω such

that f(m,n) ∈ R′ just if n is the m-th element of an infinite branch through
R”, i.e., this is a Π1

1-property of R. So we get that (5) is equivalent to a
statement of the form

∃R ∈ 2ω ∀R′ ∈ 2ω ¬Υ(R′, R) ∧ Θ̄(R, rp) (6)

where Υ(R′, R) is a ∆1
0 statement asserting that R′ codes an infinite branch

through R, and thus the whole of (6) is Σ1
n+2. This completes the inductive

step for the Σ1
n+1-case, and the Π1

n+1-case works just the same, mutatis
mutandis.

Levy-Shoenfield absoluteness theorem

This paper deals with Σ1
3-absoluteness between a ground model and the

forcing extension. What about Σ1
2-absoluteness? In this case, Theorem 1.34,

called Levy-Shoenfield Absoluteness Theorem, shows absoluteness holds not
only between a ground model and its extension, but for a large class of
transitive models.

For this section, reals will be elements of ωω, rather than elements of 2ω.
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1.34 Theorem. Let A be a Σ1
2(a)-predicate, for a real a, and let M be a

transitive model of ZF−, a ∈M , ω1 ⊆M . Then

AM = A ∩M

Proof. Let U a model of ZF− (possibly U = V ) s.t. a ∈ U , ω1 ⊆ U and
work in U . For a Σ1

2(a)-predicate A the following equivalences clearly hold,
with κ denoting the ω1 of V ,

x ∈ A ⇐⇒ ∃ y ∈ ωω ∀ z ∈ ωω ∃n ∈ ω (x � n, y � n, z � n) 6∈ T
⇐⇒ ∃ y s.t. T (x, y) is well founded.
⇐⇒ ∃ y ∃ f : Seq −→ κ s.t. f is order-preserving on T (x, y).

Here T is arithmetical in a parameter a and

T (x, y) := {w ∈ Seq | (x � lh(w), y � lh(w), w) ∈ T }.

The last equivalence holds as the ZF−-model U can build a rank function
for the countable tree T (x, y) just if it is well-founded.

Now we define another tree T̄ in U (the nodes correspond to initial seg-
ments of a ranking function):

T̄ := {(u, v, r) ∈ Seq × Seq × <ωκ | lh(u) = lh(v) = lh(r) and

r̄ : Seq
par−→ κ is

order-preserving on T (u, v).}

where r̄ denotes the partial function r̄(sn) = r(n) ( (sk)k∈ω is your favorite
canonical enumeration of sequences of natural numbers), and T (u, v) := {w ∈
lh(u)ω | (u � lh(w), v � lh(w), w) ∈ T }. This allows us to write

x ∈ A ⇐⇒ T̄ (x) not well-founded,

where of course T̄ (x) := {(v, r) |(x � lh(t), v, r) ∈ T̄}. Now we leave U . Ob-
serve that, as T̄ is ∆1(a), T̄U = T̄ V . The usual way of showing absoluteness
of well-foundedness (via a rank function on T̄ (x)) easily yields that for M as
in the hypotheses of the theorem, and x ∈M ,

x ∈ A ⇐⇒ M � x ∈ A
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1.4 Large cardinals

Zero sharp and the Covering Lemma

0] is a set of natural numbers satisfying a certain, absolute syntactical prop-
erty. 0] is not in L; in fact, we may regard it as a truth predicate for L. Its
existence is equivalent to the existence of a cub class of ordinals, containing
all uncountable V -cardinals, which are indiscernible in L and whose Skolem
hull in L is all of L. An introduction to 0] and indiscernibles can be found
in [Jec78, sec. 30] or [Dev84, V]. The next two facts can serve as a black box
for our purposes. For a proof, see [DJ75].

1.35 Fact. If 0] exists, V 6= L and for any two uncountable V -cardinals
α < β, Lα ≺ Lβ.

1.36 Fact. Covering Lemma. If 0] does not exist, ∀X ⊆ L ∃ Y ∈ L s.t.
|Y | = |X|+ ω1 ∧X ⊆ Y

We shall use the following consequences of the covering lemma. For sake
of completeness, we include the proof.

1.37 Fact. Assume 0] does not exist. Then

1. If 2cfκ ≤ κ+, then κcfκ = κ+ (i.e., the Singular Cardinal Hypothesis
holds, implying GCH at strong limit singular cardinals).

2. If ω < cfλ < |λ|, (cfλ < λ)L.

3. If κ is a singular cardinal, then (κ+)L = κ+.

Proof. 1. For each s ∈ [κ]cfκ, let s ⊂ Ys ∼= cfκ · ω1, Ys ∈ L ∩ P(κ). We
have

[κ]cfκ =
⋃
{[Ys]cfκ | Ys ∈ Lκ+ , s ∈ [κ]cfκ}, whence

[κ]cfκ . κ+ · (cfκ · ω1)cfκ = κ+ · 2cfκ = κ+

2. Let C
cof
⊂ λ, otp C = cf λ. Take C ⊆ Y ∈ L, Y ∼= cf λ. Then

otp Y < (cf λ)+ ≤ |λ| ≤ λ, but the order type is absolute between L
and V .

3. By 2, any ordinal between κ and κ+ must have cofinality less than itself
in L. In particular, it cannot be a regular cardinal in L.
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Some small large cardinals

The consistency proofs in this paper will deal with reflecting, remarkable
and with lightface Σ1

2-indescribable cardinals (which will be introduced and
treated in section 5.1). We would like to give convenient upper and lower
bounds for the strength of these notions; any definitions we omit here can be
found in [Kan97].

1.38 Definition. We say κ ∈ Reg is reflecting if, and only if, for all formula
φ(x) and ∀ p ∈ Hκ, whenever ∃ΘHΘ � φ(p), ∃ δ < κ Hδ � φ(p).

1.39 Fact. Let κ be a regular cardinal. Then κ is reflecting ⇐⇒ Vκ ≺Σ2 V .

Proof. First assume κ is reflecting. Observe that Hκ = Vκ: κ is inaccessible,
as ∀x ∈ Hκ ∃δ < κ s.t. Hδ � ∃P(x), and P(x)Hδ = P(x) ∩ Hδ = P(x). κ
inaccessible implies Hκ = Vκ, as in that case, Hκ is closed under power set
and small unions. As κ is an uncountable regular cardinal, Hκ ≺Σ1 V , and
so upwards absoluteness of Σ2-statements is immediate. Now if V � ∃xφ(x)
(where φ(x) is Π1 with parameters in Hκ), there is x0 ∈ Hδ, δ < κ s.t.
Hδ � φ(x0), and φ(x0) is absolute between Hδ and Hκ.

Now, conversely, suppose Vκ ≺Σ2 V . First of all, again κ must be inac-
cessible: asserting existence of a surjection from an ordinal to P(x) is Σ2,
while P(x) ∈ Vκ for x ∈ Vκ (as κ is limit). So again Hκ = Vκ. Secondly,
suppose Hθ � φ, allowing parameters in Hκ. “y = Hδ” is Π1 (and hence
absolute between Hκ and V ) so ∃δ Hδ � φ is Σ2, and thus is reflected by
Hκ ≺Σ2 V .

1.40 Fact. If both a reflecting and a Mahlo cardinal exist, then the least
Mahlo is strictly below the least reflecting, which itself is not Mahlo. Exis-
tence of a Mahlo implies consistency of a stationary class of reflecting cardi-
nals.

Proof. Let θ be the least Mahlo and κ the least reflecting. If θ > κ, as
Hθ+ �“∃ a Mahlo”, some Hη, with regular η < κ reflects this; as being Mahlo
is absolute between Hη and V , there is a Mahlo below κ, contradiction. Now
assume κ itself is Mahlo. For any ordinal ξ < κ, let f(ξ) be least such that
for all p ∈ Hξ+ and all formulas φ(x), if there is a regular δ s.t. Hδ � φ(p),
then there is such δ below f(ξ). By the reflection property and inaccessibility
of κ, f maps κ into κ; as κ is Mahlo, there must be a regular fixed point of
f below κ, but such a point must be a reflecting cardinal itself. If θ is any
Mahlo (not reflecting), look at a similar f such that its regular fixed points
are reflecting in Hθ; Hθ is a model of ZFC with stationarily many reflecting
cardinals.
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Let us call a cardinal Σk-Mahlo (resp. Πk-Mahlo) if every cub subset of
κ with a Σk (resp. Πk) definition (with a parameter from Vκ) contains an
inaccessible cardinal.

1.41 Fact. If κ is reflecting, κ is Σ2-Mahlo.

Proof. Assume ξ ∈ C ⇐⇒ φ(ξ), where φ(x) is Σ2. As Vκ ≺Σ2 V , we have
Vκ � ∀ξ∃ξ̄ > ξφ(ξ̄), so for some inaccessible η < κ, Vη believes the same
thing, and by upwards absoluteness of Σ2 statements for Vη, C is unbounded
in η, whence η ∈ C.

1.42 Definition. [Sch00b] κ is called θ-remarkable for a regular cardinal
θ, if, and only if, there exist countable transitive models M , N , together
with elementary embeddings π : M →Σω Hθ, σ : M →Σω N such that for
κ̄ := π−1(κ), θ̄ := M ∩On,

• crit(σ) = κ̄,

• σ(κ̄) > θ̄

• θ̄ ∈ RegN , M ∈ N and N �“M = Hθ̄”.

κ is remarkable if, and only if κ is θ-remarkable for all regular θ > κ.

1.43 Fact. If κ is remarkable, κ is reflecting.

Proof. Assume κ is remarkable and Hθ � φ(p), where p ∈ Hκ and θ > κ reg-
ular. Take N,M countable transitive, together with elementary embeddings
π : M →Σω Hθ, σ : M →Σω N , as in the definition of remarkability. Let
κ̄ := π−1(κ). By elementarity,

M � φ(π−1(p)).

But N �M = HM∩On, and M ∩On < σ(κ̄) is a regular cardinal in N . Thus

N � “∃λ < σ(κ̄)Hλ � φ(π−1(p))”

As π−1(p) ∈ Hκ̄
M , we have σ(π−1(p)) = π−1(p). So we can pull back via σ

to obtain
M � “∃λ < κ̄ Hλ � φ(π−1(p))”.

Once more applying π, we can see that Hλ � φ(p) for some regular cardinal
λ below κ.

To show relative consistency of a remarkable cardinal, we mention the
ω-Erdös cardinal κ(ω), i.e. the least κ such that κ→ (ω)<ω2 (meaning every
f : [κ]<ω → 2 has an infinite homogeneous set). Such κ are inaccessible (by
a combinatorial argument, see [Kan97, 7.15, p. 82]).
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1.44 Fact. ∃κ s.t. κ→ (ω)<ω2 implies the consistency of “ZFC∧ there is a
remarkable cardinal”.

Proof. Observe that if κ→ (ω)<ω2 , then the same holds relativized to L: let
f be a constructible coloring of finite sequences of κ. A homogeneous set of
order-type ω exists if and only if {p ∈ [κ]<ω|p is f -homogeneous }, ordered
by ⊃, has an infinite branch. As has been shown before (see the proof of
1.34), such statements are sufficiently absolute, so a homogeneous set exists
in L. We work in L for the rest of the proof. Let κ be least such that
there is 〈Lκ, ιi〉i∈ω, a structure with ω indiscernibles. Let π : Lγ →Σω Lκ
be an elementary embedding obtained by collapsing the Skolem hull of the
indiscernibles with respect to Lκ (observe γ < ω1). Let α, β denote the
pre-image under π of ι0, ι1. As Lγ is the Skolem hull of the pre-image of
the indiscernibles, the map ιk 7→ ιk+1 induces an elementary embedding
σ : Lγ →Σω Lγ such that σ(α) = β and (by minimality of κ) α = crit(σ) (we
omit some details here; see [Kan97, sec. 9]). Note that by 1.5, ι0 is regular
in Lκ, and playing with σ and π shows ι0 and hence every indiscernibles is
inaccessible in Lκ (and thus in L). Now we show that Lβ �“α is remarkable”
(it also is a model of ZFC by inaccessibility). Let θ be regular in Lβ. Set
π̄ := π � Lθ, σ̄ := σ � Lθ. It remains to observe that as β is inaccessible in
Lγ, θ is also regular in Lγ and thus in Lσ(θ). We have:

∃θ̄, θ̃ < ω1 ∃π̄ : Lθ̄ → Lπ(θ), σ̄ : Lθ̄ → Lθ̃ s.t.
crit(σ̄) = π̄−1(π(α)), σ̄(crit(σ̄)) > θ̄ and θ̄ is regular in Lθ̃

(7)

By inaccessibility of π(β), Lπ(β) ≺Σ1 L, so (7) holds in Lπ(β); pulling back
via π shows that α is θ-remarkable in Lβ; but θ was arbitrary.

1.45 Fact. Every Silver indiscernible is remarkable in L.

Proof. Let (ιk)k∈ω+1 be the first ω+1 indiscernibles; it suffices to show ι0 is re-
markable in Lι1 . Let the real r consist of the Gödel-numbers {]φ(ι0, ι1)|Lι2 �
φ(ι0, ι1)}. Then r ∈ L. The following sentence is Σ1(r): there exists a well-
founded model M with ω many indiscernibles with height a limit ordinal such
that the theory of M includes r. Therefore, by Levy-Shoenfield absoluteness
1.34, this is true in L. The previous proof shows that the Gödel-number of
the formula saying “ι0 is remarkable in ι1” is in r and we are done.

21



2 Equiconsistency for set forcing

2.1 Theorem. [FMW92] The following are equiconsistent, modulo ZFC:

1. Σ1
3-absoluteness for all set forcing holds

2. there exists a reflecting cardinal

Proof. First, assume Σ1
3-absoluteness for all set forcing holds. We will show

that L � “κ is reflecting”, for κ = ωV1 , using the characterization of reflect-
ingness given in Fact 1.39 (on p. 19).

Firstly, κ is a limit cardinal in L: Else, assume L �“κ = λ+ ∧λ ∈ Card”.
The following formula ψ(λ) expresses that there exists another countable
L-cardinal above λ:

∃x < ω1 x > λ ∧ ∀α < ω1 Lα � x ∈ Card

As both “y = L′′x and y � φ(x) (for any formula φ) are ∆1, ψ(λ) is Σ2 over
HC, in the parameter λ ∈ HC. So by fact 1.33 we can find a real rλ coding
λ and a formula ψ̄(rλ) which is equivalent to ψ(λ) and Σ1

3 in rλ.
Now force with Col(ω, {κ}): In the extension, κ < ω1 holds (by fact 1.25)

so ψ(λ) holds. As this has been shown to be equivalent to a Σ1
3(rλ) formula,

it must also hold in the ground model, by Σ1
3-absoluteness. If α < ω1 and

is not an L-cardinal, this must be reflected by some Lγ, for γ < ω1. So any
α witnessing ψ(λ) really has to be an L-cardinal, λ < α < ω1, contradicting
(κ = λ+)L.

Secondly, we show Lκ ≺Σ2 L. So let p ∈ HL
κ = Lκ, L � ∃xφ(x, p), where

φ(x) is Π1 with parameter x. Using reflection, choose some regular δ such
that Lδ � ∃xφ(x, p); Now force with Col(ω, {δ}). In the extension, δ ∼= ω,
and so the formula following ψ(p) holds:

∃χ < ω1 ∀α < ω1 Lα � χ ∈ Card ∧ p ∈ Lχ ∧ Lχ � φ∃(x, p)

Just like above, this formula can be seen to be Σ2 over HC in its parameter p,
and thus equivalent to a formula ψ̄(rp) which is Σ1

3 in a parameter rp coding
p. Interestingly we have not yet used the fact that φ itself has bounded
complexity. As before, we can now argue that ψ(p) must also hold in the
ground model and that there must exist an L-cardinal δ̄ < κ = ωV1 such that
Lδ̄ � ∃xφ(x, p). But as δ̄ is an L-cardinal, Lδ̄ = HL

δ̄
≺Σ1 Lκ, so Σ2 formulas

with parameters from the smaller model are upwards absolute between these
two models, whence Lκ � ∃xφ(x, p). This completes the proof that L �
“κ is reflecting”.
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Now, for the other direction, assume κ is reflecting. Of course κ is
inaccessible. Let G be generic for Col(ω, κ) over V . Then by fact 1.25,
V [G] � κ = ω1. We show V [G] � Σ1

3(set− forcing).
So let φ(r) be some Σ1

3 statement with real parameter r ∈ V [G] and let
Q ∈ V [G] be a p.o. such that V [G] � “ Q φ(r)”. We must show that
already V [G] � φ(r). Choose a nice name ṙ for r, that is, a name of the
form

⋃
n∈ω ň × An, where An is an antichain, and observe that the value of

ṙ is already decided in an initial segment of Col(ω, κ): each An . κ and we
can choose β regular such that

⋃
n∈ω{dom(q)|q ∈ An} ⊂ β. By fact 1.28,

G0 := G∩Col(ω, β) is Col(ω, β)-generic over V and G1 := G∩Col(ω, κ−β)
is Col(ω, κ− β)-generic over V . By weak homogeneity of the Lévy-Collapse,
and since ṙ[G] = r, V [G0] � “ Col(ω,κ−β)∗Q φ(ř)”.

Obviously, V [G0] � “∃P P φ(ř)”, so in V , the following holds: there
is a name Ṗ for a p.o. such that Col(ω,β)“ Ṗ φ(ř)”. Now the fact that
κ is reflecting in V can be used to show that without loss of generality,
Ṗ ∈ Hα, for some α < κ. Of course, for P := Ṗ [G0], |P | < α in V [G0]. By
universality of the Lévy-Collapse (corollary 1.30), there exists i : P → Q, a
complete embedding into a p.o. Q that is equivalent to Col(ω, {α}).

Now we go back to V [G]. Of course, by fact 1.28, JC := G∩Col(ω, {α}) is
Col(ω, {α})-generic over V [G∩Col(ω, α)], and a fortiori over V [G0]. As the
property of being a dense or complete embedding is absolute for transitive
models, JC can be used to construct a generic JQ on Q (as in 1.8, via dense
embeddings) and then (again as in 1.8, via i) to construct a generic (still
over V [G0]) for P - call it H. As P φ(ř) over V [G0], V [G0][H] � φ(r). But
again by completeness of i and the existence of various dense and complete
embeddings, V [G0][H] ⊆ V [G0][JQ] = V [G0][JC ] ⊆ V [G], and, being Σ1

3 in
r, φ(r) is upward absolute for transitive inner models of V [G] containing
r, whence V [G] � φ(r). This completes the proof that V [G] is a model of
Σ1

3-absoluteness for set forcing.

23



3 A lower bound for ω1-preserving set-forcing

3.1 Theorem. [FB01] Assume Σ1
3-absoluteness for all ω1-preserving set

forcings. Then, for κ = ωV1 , L � “κ is inaccessible”.

Proof. Assume that, to the contrary, L �“(ω1)V = λ+”. Using the absolute-
ness assumption, we will obtain a contradiction. As λ < ω1, let f : ω � λ.
Then f ∈ HC and ω

L[f ]
1 = ω1. Further, for each ξ < ω1, let gξ denote the

<L[f ]-least surjection gξ : ω � ξ. For each n ∈ ω, gξ(n) < ξ, so the function
hn : ω1 → ω1, defined by ξ 7→ gξ(n) is regressiv. Hence, by Fodors Lemma ,
there exists a stationary subset Sn of ω1 such that hn is constant on Sn.

Clearly, the intersection of all the Sn cannot contain two distinct ordinals:
as for all α, β ∈ Sn, gα(n) = gβ(n), if α, β ∈ Sn for all n ∈ ω, we have gα = bβ,
contradicting the definition of these functions. Of course, the intersection
of even only two stationary sets needn’t be stationary. But, using an ω1-
preserving forcing, we can add a cub subset to any one of these stationary
sets; and the cub subsets of ω1 form a σ-complete filter. The idea of this
proof is to use Σ1

3-absoluteness to pullback such a cub subset with the desired
property into the ground model. While forcing will usually not be able to
add cub subsets to the Sn for all n simultaneously, these pullbacks co-exist
in the ground model, leading to a contradiction.

So fix n for the moment. We force with PSn , the forcing for adding a cub
subset of this particular Sn (see definition 1.20, p. 10). So let G be generic
for PSn and work in V [G], denoting

⋃
G, the generic cub subset of Sn, by C.

In this model, clearly

∃C cub in ω1 s.t. ∀ξ, χ ∈ C, gξ(n) = gχ(n).

We will now force again so that in the extension, a Σ2 strengthening the
previous sentence with parameters from HCV holds. Look at the following
function c : 2ω → 2ω: if r ∈ 2ω codes a countable ordinal α (in the sense that
it codes a relation whose transitive collapse is the ∈-relation on α, see 1.32),
define c(r) to be some real that codes the countable ordinal min(C − α).
Now we force with Pc, the almost disjoint coding for c (definition 1.15, p. 8).
Let R be generic for this forcing and work in V [G][R].

Now we make the following observation: if α < ω1 is such that Lα[f ][R]
is a model of ZF− and all ordinals below α are seen to be countable inside
Lα[f ][R], then α ∈ C. To see this, let η < α be arbitrary. As Lα[f ][R] �“η ∼=
ω”, we can easily find E ∈ 2ω ∩ Lα[f ][R] coding η (let f be a bijection from
ω to η in that model and let E code the pullback of the relation ∈ on η
under that bijection). So as E � R ∈ Lα[f ][R] and Lα[f ][R] � ZF− (in fact
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∆1-Replacement would suffice), c(E) = tcoll(〈ω,E � R〉) ∈ Lα[f ][R]. This
shows that C is unbounded below α, whence α ∈ C.

Let θ(α, f,R) denote the following:

Lα[f ][R] � “ZF− ∧ ∀α ∈ On α ∼= ω”.

We have added a real R with the following property:

∀α, β < ω1 ( θ(α, f,R) ∧ θ(β, f, R) ) ⇒ gα(n) = gβ(n) (8)

What is the complexity of this statement? Remember that the gξ had a
very simple, absolute definition. In fact, whenever Lη[f ] �“ξ ∼= ω” and
Lη[f ] is a model of, say ∆1-Replacement (which makes <L definable inside
Lη[f ]), gξ ∈ Lη[f ] and is definable there. So if α, β are countable in Lη[f ], a
model of at least ∆1-Replacement, Lη[f ] �“gα(n) = gβ(n)” is equivalent to a
statement that is ∆1 in the parameters α, β, n and f . So (8) can be written
as:

∀α, β, γ < ω1

[θ(α, f,R) ∧ θ(β, f, R) ∧ θ(γ, f, R) ∧ γ > α, β ]⇒
Lγ[f ] � “gα(n) = gβ(n)”)

Denote this statement by Ψ(R, n, f). By the arguments of the preceding
paragraph this statement is Π1 in R, n and f over HC, and ∃RΨ(R, n, f) is
Σ2(f, n) over HC. Take rf ∈ 2ω coding f ; we can find an equivalent Σ1

3(rf )
sentence ∃rΨ̄n(rf ). As V [G][R] � ∃rΨ̄n(rf ) (where rf ∈ V ) and G and R
where obtained by a finite iteration of ω1-preserving forcings, the aboluteness
assumption yields V � ∃rΨ̄n(rf ), and hence V � ∃RΨ(R, n, f).

We work in V again. We have shown, that for all n ∈ ω, there exists a
witness Rn to (8). So let, for each n ∈ ω,

Cn := { α < κ | Lα[f ][Rn] ≺ Lω1 [f ][Rn] }

By corollary 1.4, these are cub subsets of ω1. For any n ∈ ω and α,∈ Cn,
θ(α, f,Rn) holds (by elementarity). So, as (8) holds for each Rn, we have

∀n ∈ ω ∀α, β ∈ Cn gα(n) = gβ(n).

As
⋂
n∈ω Cn is cub, we can choose distinct α, β ∈

⋂
n∈ω Cn. Now as promised,

gα = gβ, a contradiction.

3.2 Corollary. Assume Σ1
3-absoluteness for the class of all ω1-preserving set

forcings. Then, ω1 is inaccessible to reals, i.e. for κ = ωV1 and any r ∈ 2ω,
L[r] � “κ is inaccessible”.

Proof. Start with an r s.t. L[r] � κ = λ+. Repeat the argument above,
dragging along r as a parameter, leading to the same contradiction.
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4 Coding and reshaping when ω1 is inaccessi-

ble to reals

In this section we give proofs of:

1. [Fri] Σ1
3 absoluteness for ω1-preserving forcing is equiconsistent with

the existence of a reflecting cardinal.

2. [Fri] “Σ1
3 absoluteness for proper forcing holds and ω1 is inaccessible to

reals” is equiconsistent with a reflecting cardinal.

How to obtain a model for Σ1
3 absoluteness for all set forcings from a

reflecting has already been shown. It remains to show how to obtain large
cardinal strength from the requisite absoluteness assumption. The first claim
is almost implicit in [FB01]. In [Sch00a] it is shown that the forcing used
in [Fri] to prove the first claim is in fact stationary preserving, leading to
the intermediate result for the class of stationary-preserving set forcing. The
second claim builds on work in [Sch00b].

4.1 Definition. Let α < β be regular cardinals. We say β is α-reflecting,
⇐⇒ for any formula φ with parameters in Hα, if there is a cardinal λ s.t.
Hλ � φ, then there is such a λ below β.

In an earlier attempt to obtain large cardinal consistency strength from
Σ1

3-absoluteness for ω1-preserving set forcing, it was proved it implies that
ω2

V is ω1
V -reflecting in L. But this is consistency-wise not stronger than

ZFC.

4.2 Fact. Let α be a cardinal, β a regular cardinal ≥ α. Then Con(ZFC +
(γ = β+ ⇒ L �“γ is α-reflecting”)) ⇐⇒ Con(ZFC)

Proof. For each formula φ(x1, .., xk) and each ~p = (p1, .., pk) ∈ [Lα]<ω, choose
λ(φ, ~p ) s.t. Lλ(φ,~p ) � φ(p1, .., pk), if such λ exists. Let κ be some regular car-
dinal greater then all the λ(φ, ~p ). Assuming κ > β+, force with Coll(β, {κ}),
defined in 1.24, p. 11. By fact 1.25, Coll(β, {κ}) preserves α and κ+ remains
a cardinal. By construction, κ+ is α-reflecting in L, and this still holds in
the extension, but there, κ+ = β+.

4.1 Preserving ω1

4.3 Theorem. If Σ1
3-absoluteness holds for ω1-preserving set forcing, ω1

V

is reflecting in L.
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Proof. Let φ be any statement with parameters ~p in Lω1 = Hω1 ∩ L =
(Hω1

V )L, and fix λ s.t. Lλ � φ ((Hλ)
L = Lλ, as λ is an L-cardinal). We shall

show, using the absoluteness assumption, there is such a λ below ω2. Let me
first try to give a sketch of the problems encountered.

We will first collapse λ and then we will force to get a real witnessing, in
a sense, that there is a λ below ω2 with the desired properties. If we manage
to ensure the witnessing via a Π1

2 property of the real, by our absoluteness
assumption, such a witness will exist in the ground model. When we “decode”
λ from the real, we obtain λ < ω1 with the desired properties, and this makes
crucial use of the previously observed fact that ω1 is inaccessible to reals.

The first difficulty arises in the “coding” process: of course, after col-
lapsing λ to ω1, we could code it by a set A ⊆ ω1, and code this by a
real using almost disjoint forcing. But we want to be able to decode in the
ground model. So we shall use an almost disjoint family recursively con-
structible from initial segments of A. Such a thing exists if we reshape A,
using Jensen’s classical forcing from [BJW82], but to show the reshaping-
forcing preserves ω1, we will need A to code much more information, in fact,
it will need to code all of Hω2 of the model where λ has been collapsed. This
problem can be solved as we may assume 0] does not exist.

The second problem is to ensure our real will do its witnessing job via a
Π1

2-statement, which seems difficult, as it witnesses a property of uncountable
sets. A variant of the reshaping-forcing will be able to deal with this. Now
let’s get on with the proof.

Collapsing and coding

First of all, we may assume 0] does not exist, as otherwise, any uncountable
V -cardinal would be rather large in L, by all means a true reflecting cardinal.
For if 0] exists, for any uncountable cardinals α < β, we have Lα ≺ Lβ. Using
reflection we can see Lω1 ≺ L, which clearly implies ω1 is reflecting by Fact
1.39.

Take κ a strong limit singular above λ, with uncountable cofinality. As
0] doesn’t exist, we are allowed to use the Covering Lemma (see Fact 1.36,
p. 18), whence 2κ = κ+, and κ+ = (κ+)

L
, by Fact 1.37.

Now we force with Coll(ω1, {κ}) (see definition 1.24), temporarily denoted
by Col. We have κω = κ, so by fact 1.25, Col has the κ+ − cc, whence
κ+ = ωV

Col

2 = (κ+)L (so κ is just an ordinal between ω1 and ω2 in the

extension). Moreover, as Col is σ-closed, P(ω)V
Col

= P(ω)V and has size
less than κ, so Col forces the continuum hypothesis. Until further notice, we
work in V Col.

Any x ∈ Hω2 can be coded by a well founded relation Ex on ω1, so we
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can find a set A ⊆ ω2 s.t. Hω2 ⊆ L[A], as there are only ω2 subsets of ω1:
Let S ⊆ ω1. Then S has a name Ṡ ∈ V , of the form

⋃
χ<ω1
{χ̌}×Dχ , where

each Dχ ⊆ Col. But in V , there are at most P(Col)ω1 ∼= 2κ·ω1 ∼= κ+ such
names. So in V Col, 2ω1 = κ+ = ω2. Actually, Hω2 ⊆ Lω2 [A]. Let G ⊆ ω1

code a surjection from ω1 onto κ. As κ+ = (κ+)L, L[G] � ω1
+ = κ+. So we

can choose an almost disjoint family A on ω1 of size κ+, A ∈ L[G]. Now
we force with the almost disjoint coding PA,A (see section 1.2, p. 6). PA,A is
σ-closed. From now on we work in W := V Col∗PA,A .

Take A′ ⊆ ω1 such that it codes both G and the generic for PA,A. Then

we have A ∈ L[A′], and so (Hω2)V
Col ⊆ Lω2 [A′]. Note that even (Hω2)W ⊆

Lω2 [A′] = (Hω2)L[A′]: For x ∈ Hω2 , let Ex ⊆ ω1 code ∈� TC({x}). This
Ex has a “nice name” in V Col, of the form Ėx =

⋃
χ∈ω1
{χ} × Aχ, where

each Aχ is an antichain. PA,A has the ω2-cc, as the set of first components

of conditions has size ω1
<ω1 = ω1. Thus Ėx ∈ (Hω2)V

Col ⊆ L[A′], and so
Ex = Ėx[A

′] ∈ L[A′]. Also note that by σ-closedness of PA,A, CH still holds
in W .

Reshaping

Now that we have found a sufficiently smart A′ ⊆ ω1, we can set to the task
of coding it into a real R, again using almost disjoint coding. But when we
decode in the ground model V , we can only rely on decoding A′ ∩ (ω1)L,
having no larger a.d. family easily accessible from both models. It would
help if we had L[A′ ∩ ξ] � ξ ∼= ω, for all ξ < ω1. This property of A′ is called
“reshaped”. We use the following forcing:

P := {s
bnd
⊂ ω1| (i) ∀ ξ ∈ lim ∀n, if ξ + 2(n+ 1) ≤ sup(s), then

ξ + 2(n+ 1) ∈ s ⇐⇒ ξ + n ∈ A′
(ii) ∀ ξ ≤ sup(s) L[s ∩ ξ] � “ξ ∼= ω”},

ordered by end extension. Let’s show this forcing achieves what is promised.
For each α < ω1, the set Dα := {s ∈ P |α ≤ sup(s)} is dense in P: Let p0 be a
condition with supremum δ, and let α < ω1. Let E ⊆ {δ+2n+1|n ∈ ω} code
the epsilon relation on α. Now let p := p0∪E∪{ξ+2(n+1)|ξ+n ∈ A}∩α+1.
This is a condition, hits Dα and extends p0. By this density argument, we
know that the generic for P will be unbounded in ω1. Observe that the
definition has been set up so that the following, later to be used fact holds:

4.4 Corollary. For all p ∈ P and for any α < ω1, there is q ≤ p with
α ≤ sup(q) and (q − p) ∩ Lim = ∅

4.5 Lemma. The Reshaping forcing P is ω1-distributive.
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Proof of lemma. Now we shall use the fact that A′ codes all of Hω2 . Let
(Dn)n∈ω be a sequence of dense subsets of P , and let p0 be a condition. We
will find pω ∈

⋂
n∈ωDn extending p0. First of all, observe {P, (Dn)n∈ω, p0} ⊆

Hω2 ⊆ Lω2 [A′]. Let N denote 〈Lω2 [A′], P, (Dn)n∈ω, p0〉 for now. Inductively
build a countable chain of elementary submodels:

M0 := <L[A′]-least countable s.t. M0 ≺ N
Mn+1 := <L[A′]-least countable s.t. Mn+1 ≺ N , and Mn ∈Mn+1.
Mω :=

⋃
n∈ωMn (whence Mω ≺ N )

(9)

Now, for i ∈ ω+1, let πi be the inverse of the map collapsingMi to a transitive
set. The collapse of Mi is of the form 〈Lδi [A′ ∩ βi], P i, (Di

n)n∈ω, p
i
0〉, where

βi, δi < ω1, {P i, (Di
n)n∈ω, p

i
0} ⊆ Lδi [A

′ ∩ βi] and each of these predicates
is mapped by π to its corresponding set in N , e.g. πi(P

i) = P . Using
elementarity, we get that πi(βi) = ω1, and βi is the least ordinal moved by
πi. So as pi0 ⊆ βi, p

i
0 = p0 (using the fact that π is the identity on βi and

elementarity). See the figure for an overview of the situation.
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Lδn [A′ ∩ βn] � βn = ω1

supn∈ω(βn) = βω
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Σ∞

Lω2 [A′]

Figure 1: Traces of a countable chain of elementary submodels

As ranπn ⊆ ranπω,

〈Lδn [A′ ∩ βn], P n, (Dn
m)m∈ω, p

n
0 〉

πω
−1 ◦ πn−−−−−−−→

Σω

〈Lδω [A′ ∩ βω], P ω, (Dω
m)m∈ω, p

ω
0 〉

(10)
for each n ∈ ω. Call the model on the right hand side of (10) N ′, and let
M ′

n := ran(πn ◦πω−1). Then we can write (10) as M ′
n ≺ N ′. Now we can see,

using elementarity and absoluteness of <L[A′], the output of the definition
(9), with N replaced by N ′, is just the chain (M ′

n)n∈ω. Thus, the sequences
(δn)n∈ω, (βn)n∈ω are elements of Lω2 [A′ ∩ βω].
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Now choose pn+1 ∈Mn+1∩Dn inductively for all n ∈ ω, so that pn+1 ≤ pn
and sup(pn+1) > βn = ω1 ∩Mn (this is possible as βn is countable in Mn+1).
Let

pω :=
⋃
n∈ω

pn.

These pi are not moved by πj, for j ≥ i in ω+1. The only thing left to check
is that pω is a condition. The part about coding A′ is clear. Let ξ < sup(pω).
Then L[pω ∩ ξ] = L[pn ∩ ξ], for some n, so in this case the desired property
holds as pn is a condition.

Now let ξ = sup(pω). Then, by construction of pω, ξ = βω. So L[pω] ⊇
L[A′ ∩ βω], and the latter model knows that βω is the limit of a countable
sequence of countable ordinals, namely (βn)n∈ω, hence βω is countable in
L[pω].

From now on, we shall work in W P , containing A′′, the P -generic, which
is reshaped. Of course A′ and thus (Hω2)W are constructible from A′′. By ex-
actly the same argument as for the almost disjoint coding, again (Hω2)W

P ⊆
Lω2 [A′′], since P consists of hereditarily countable sets while CH holds.

Killing universes

We are now almost ready for coding A′′ into a real. But first we must tackle
the second problem mentioned at the beginning. Among other things, we
have achieved that

Lω2 [A′′] � “ ∃λ ∈ CardL s.t. Lλ � φ( ~p )” (11)

Let “ ∃λ ∈ CardL s.t. Lλ � φ( ~p )” be denoted by ψ( ~p ). We can w.l.o.g.
assume that any transitive ZF− model containing A′′ will believe ψ( ~p ) (by
changing A′′ such that part of it codes the epsilon relation on λ). Then we
have:

for all transitive M ,
(
M � ZF− ∧ {ω1, A

′′} ⊆M)⇒M � ψ( ~p )
)

(12)

To motivate our next step, let me jump ahead: in order to apply our absolute-
ness assumption, we shall use a statement very much like the one above, but
only mentioning reals. To eventually formulate such a statement, it would
be nice if we didn’t have to quantify over all M , but only over members of
HC. In fact we can, by an ω1 preserving forcing, make a stronger statement
than (12) true, where quantification is over HC. We will use the following
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forcing notion:

P ′ := {p
bnd
⊂ ω1| (i) ∀ ξ ∈ lim ∀n, if ξ + 2(n+ 1) ≤ sup(s), then

ξ + 2(n+ 1) ∈ s ⇐⇒ ξ + n ∈ A′
(ii) ∀M ∈ HC

if M is a transitive model of “ ZF− + ∃ ω1 ”,
p ∩ ωM1 ∈M and sup(p) ≥ ωM1 , then
M � ψ( ~p ) },

ordered by end-extension.
Let’s show that the generic for P ′ is unbounded in ω1, i.e., that for each

α ∈ ω1, the set Dα := {s ∈ P ′|α ≤ sup(s)} is dense in P ′. But this works
just like for the Reshaping: Given p0 and α, we just append a “short” set E
coding α to obtain p1. Any countable transitive ZF−-model M with p1 ∈M
that has an ω1 > sup(p0) must contain E, and thus everything up to and
including α is countable in M . We can see that we’re in a way reshaping
A′′ again to make ordinals that are ω1 in models containing initial segments
of A′′ and believing the wrong things (that is, ¬ψ( ~p )) increasingly sparse.
Again, we would like to call the following fact to your attention, as we shall
re-use it in the next section:

4.6 Corollary. For all p ∈ P ′, and for any α < ω1, there is q ≤ p with
α ≤ sup(q) and (q − p) ∩ Lim = ∅

Now assume B is the generic for this forcing notion. Then the following
improvement of (12) holds:

for all transitive M in HC,
(M � “ZF− + ∃ ω1” ∧ B ∩ ω1

M ∈M) ⇒M � ψ( ~p )
(13)

We still have to show that P ′ is ω1-preserving, but the proof is very similar
to that of lemma 4.5.

4.7 Lemma. The Killing Universes-forcing P ′ is ω1-distributive.

Proof of lemma. Again, let (Dn)n∈ω be a sequence of dense subsets, p0 ∈ P ′.
Construct (δi)i∈ω+1, (βi)i∈ω+1 and (pi)n∈ω+1 just like in the proof of lemma
4.5, with A′ replaced by A′′ and P by P ′. We show pω is a condition. We
only prove part (ii).

Let M ∼= ω, transitive, M � “ZF−+∃ω1”. As before, if ω1
M < sup(pω) =

βω, (ii) clearly holds as then for some n, ω1
M < sup(pn) and pn is a condition.

What if ω1
M = sup(pω) = βω? By (11) and by elementarity,

Lδω [A′′ ∩ βω] � “ ∃λ ∈ CardL Lλ � φ ” (14)
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Moreover, we have asked that A′′ code λ in some simple absolute way, so the
same is true of A′′ ∩ βω and λω, whence λω ∈ M . It only remains to show
that M � λω ∈ CardL. By (14), it remains to show that M ∩ On ≤ δω.
Suppose not. Using elementarity we see the images of (Dn)n∈ω, po and P ′

under πω are all constructible from A′′∩βω by stage δω ∈M , and thus all the
ingredients needed to define (δn)n∈ω, (βn)n∈ω are present in M . But then,
once more, M � βω ∼= ω, contradiction. So M ∩ On ≤ δω. This shows (ii)
holds for pω and completes the proof of the lemma.

Pulling back by a real

From now on we work in W P∗P ′ where B ⊆ ω1 is generic for P ′. B is still
reshaped since A′′ can be recovered via a simple mapping. Now we use the
reshapedness to construct an a.d.-family B: Start with the <L-least real
belonging to an a.d. family in L. Having constructed (bξ)ξ∈α ∈ L[A′′ ∩ α],
we take

bα := the <L[B∩α]-least set a.d. from (bξ)ξ∈α in L[B ∩ α],

which exists as L[B ∩ α] � α ∼= ω. Let B := (bξ)ξ∈ω1 .
Now we force with PB,B. Call the generic R and let us from now on work

in W ′ := W P∗P ′∗PB,B . This real R will be the witness to the fact that a λ
with the desired properties exists. But in order to prove a real exists in the
ground model with the same witnessing capacity, we have to express this as
a Π1

2 property of R. If α < ω1 and Lα[R] � “ZF− ∧ δ = ω1”, we can decode
B ∩ δ in that model, so by (13), the following holds of R:

∀α < ω1

Lα[R] � “ZF− + ∃ ω1” ⇒ Lα[R] � ψ( ~p )
(15)

The formula above is clearly Π1(R, ~p ) over HC, so by Fact 1.33, it is equiv-
alent to a Π1

2(R, rp)-formula Φ(R, rp), for some real rp in the ground model
V .

So finally, after forcing with a finite iteration of ω1-preserving forcing
notions, there exists a real R satisfying (15). By Σ1

3-absoluteness, there is a
real R0 with the same property in V . Now we work in V again. By corollary
3.2, δ := ω2

L[R0] < ω1
V . Lδ[R0] � “ZF−+ ∃ω1 ”. But then (15) implies that

Lδ[R0] � ψ( ~p )

i.e. ∃λ ∈ CardL ∩ ω2 s.t. Lλ � φ( ~p ).
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4.2 Preserving stationary subsets of ω1

All the forcings in the previous proof where ccc or σ-closed, except for Re-
shaping and Killing Universes. These were shown to be ω1-closed. In fact,
in [Sch00a] it is shown they preserve stationary subsets of ω1.

4.8 Lemma. Killing Universes and Reshaping are stationary-preserving.

Proof. We shall be working in a context where there is A ⊆ ω1 s.t. Hω2 ⊆
Lω2 [A] and CH holds. We start with the Reshaping forcing P . W.l.o.g. we
can assume that for all α ∈ lim∩ ω1, L[A∩ α] � ω1 ≥ α, by padding A with
sets E ⊆ [ξ, ξ+ω) which collapse ξ. Let S ⊂ ω1, stationary, and let q ∈ P , Ċ
a P -name such that q “Ċ is cub in ω1”. We need to find a condition p ≤ q
s.t. p  “Ċ ∩ Š 6= ∅”.

By replacing Ċ with a “nice name” if necessary, we can assume Ċ ∈
Lω2 [A]. Let N denote 〈Lω2 [A], Ċ, S, P, q〉. Consider the cub set

C0 := {α < ω1 | hNΣω(α) ∩ ω1 = α }

Let α ∈ C0 ∩ S, s.t. α > sup(q) and set M := hNΣω(α). There is π :

Lβ[A ∩ α]
∼=−→ M ≺ Lω2 [A], where π(α) = ω1 and α is the least ordinal

moved. We should mention that (as P is definable and by elementarity)
π−1(P ) = PLβ [A∩α] = P ∩ Lα[A ∩ α] and that π is the identity on that set.
Observe that (q  π−1(Ċ) is cub in ω1)Lβ [A∩α], by elementarity. Thus (by
taking preimages of the corresponding set under π),

for all γ < α, the set

Dγ := {p ∈ π−1(P ) | ∃ξ ∈ (γ, α) p  ξ ∈ Ċ}
is dense in π−1(P ).

(16)

We inductively build a decreasing chain (pi)i∈ω, picking conditions from
P ∩ Lα[A ∩ α], such that p∞ =

⋃
i∈ω pi  “α ∈ Ċ”. We start with p0 = q

(observe q ∈ Lα[A ∩ α]).
First, we consider the simple case where α happens to be countable in

L[A ∩ α]: we just choose each pn+1 end-extending pn, such that pn+1 
ξ̌ ∈ Ċ for some ξ ∈ (sup(pn), α) (which is possible by (16)), ensuring that⋃
n∈ω sup(pn) = α. It is easy to see that p∞ is a condition, as the required

property was assumed to magically hold. Clearly p∞ “Ċ is unbounded in
α”, whence p∞ “α ∈ Ċ”.

If α = ω1
L[A∩α], we have to choose our sequence of conditions more care-
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fully. Using (16), the set

C1 := {η < α | p0 ∈ Lη[A ∩ η]
and
∀p ∈ Lη[A ∩ η] ∩ P
∃q ∈ Lη[A ∩ η] ∩ P s.t. q ≤ p and

∃ξ ∈ (sup(p), α) q  ξ̌ ∈ Ċ }

is easily seen to be cub in α, and C1 ∈ Lβ[A∩α]. Moreover, by thinning out,
we can assume that C1 ⊆ lim and

for all γ ∈ C1, if η is least in C1 above γ, then Lη[A ∩ η] � γ ∼= ω. (17)

Now we pick {βi|i ∈ ω}, cofinal in C1 with order type ω. Assume we have
already chosen pn ∈ Lβn [A ∩ βn]. Let η be the minimum of C1 − (βn + 1).
By corollary 4.4 and (17), we can choose p′n ≤ pn in Lη[A ∩ η] such that

(p′n − pn) ∩ Lim = {βn}. (18)

Now extend p′n to pn+1 ∈ Lη[A ∩ η] so that for some ξ > sup(pn), p′n 
ξ̌ ∈ Ċ. Observe that

(pn+1 − p′n) ∩ C1 = ∅. (19)

Clearly, pn+1 ∈ Lβn+1 [A∩βn+1], as η ≤ βn+1. Having built this sequence, if we
can show p∞ is a condition, we are done: just like in the simpler construction,
p∞  “α ∈ Ċ”. By construction, sup(p∞) = α. To show p∞ ∈ P , we
concentrate on the non-trivial case and show L[p∞] = L[A∩α, p∞] � α ∼= ω.
Observe that by (19) and (18), C1 ∩ p∞ ∩ Lim = {βn | n ∈ ω}. But
C1 ∈ Lβ[A ∩ α], and so {βn | n ∈ ω} ∈ Lβ[p∞].

The proof can be modified to show Killing Universes preseres stationary
subsets of ω1, along the lines of 4.7. Having done the same construction
as above for P ′, we need to make sure p∞ is a condition. Again, we only
need to check the case of a countable transitive model N � “ZF + ∃ω1” with
ω1

N = sup(p∞). By the same arguments as in the proof of 4.7, there is λ ∈ N
s.t. N � Φ and Lβ[A∩α] � “λ ∈Card”, and we are done if N ∩On < β. But
this is clear as α is collapsed in Lβ[p∞].

4.9 Corollary. If Σ1
3-absoluteness holds for stationary-preserving set forcing

and ω1 is inaccessible to reals, ω1
V is reflecting in L.

Proof. We have just shown that all the forcings used in the proof of theorem
4.3 were stationary-preserving. At the end of the proof instead of appealing
to the strength provided by absoluteness for ω1-preserving forcings (corollary
3.2), we use the additional assumption that ω1 is inaccessible to reals.
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4.3 Proper forcing

Remarkable cardinals were devised in [Sch00b]. They provide an exact mea-
sure for the consistency strength of “reshaping is proper”. We will use the
fact that, assuming ω1 is not remarkable in L, Reshaping (and, as it turns
out, also Killing Universes) are proper. For the proof, it is convenient to
change the definition of Killing Universes a bit:

4.10 Definition. We define the Killing Universes for A to be the following
forcing notion:

K.U.A := {p
bnd
⊂ ω1| for all countable transitive M , if

M �“ ZF− ∧ ∃ ω1 ”
∧ ω1

M ≤ sup(p),
∧ {A ∩ ω1

M , p ∩ ω1
M , ~p} ⊆M

∧ (L[A ∩ ω1])M � ¬∃ω2,
then M �“∃λ ∈ CardL Lλ � ψ(~p)” },

ordered by end-extension.

4.11 Lemma. For A ⊆ ω1 s.t. Lω2 [A] = Hω2, if there is θ ∈ Reg ∩ ω2 such
that (κ is not θ-remarkable)L, where κ = ω1

V , then Reshaping and Killing
Universes for A are proper.

Proof. We shall prove the lemma in two steps. In the first step (following
[Sch00b]), we show that there is a cub subset C of [Lω2 [A]]ω such that for all
X ∈ C, if X = ran(π) for π : Lβ[A ∩ α]→Σω Lω2 [A], then β is not a regular
cardinal in L.

Look at C? equal to the cub set of countable X ≺ N := 〈Lω2 [A], A〉 such
that θ ∈ X. Assume that X ∈ C?, π, α and β ∈ RegL witness failure of
what is claimed above. Set θ̄ := π−1(θ). Clearly, α = crit(π) and π(α) = κ.
By elementarity of π and relativizing formulas to L, we can see π̄ := π � Lθ̄
is an elementary embedding from Lθ̄ into Lθ, and θ̄ is regular in L (as this
holds in Lβ). Now let G be generic for Coll(ω, κ). Then (as this forcing is
constructible, and in fact absolutely definable from κ), G is also Coll(ω, κ)-
generic over L. As L[G] � θ̄ ∼= ω, by fact 1.6, the following holds in L[G]:

∃π̄, θ̄ ∈ RegL π̄ : Lθ̄ →Σω Lθ s.t. π̄(crit(π̄)) = κ > θ̄ (20)

Let this statement be denoted by Φ(κ, θ). By homogeneity of the gentle
collapse of κ, we have (Coll(ω,κ) Φ(κ, θ))L. Take a countable elementary

submodel of Lω2 in L: let γ < ω1
L and σ : Lγ →Σω Lω2 , σ ∈ L. Let κ̃, θ̃

denote σ−1(κ), σ−1(θ), respectively. We can choose G̃ in L, Coll(ω, κ̃)-generic
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over Lγ. By elementarity, Lγ[G̃] � Φ(κ̃, θ̃). So there exists π̄ ∈ L and θ̄ such
that π̄ is as in (20) and θ̄ ∈ RegLγ . We have found elementary embeddings
π̄, σ ∈ L,

Lθ̄
π̄−−−→ Lθ̃

σ̄−−−→ Lθyπ̄
Lθ̃

where σ(κ̃) > θ̄ ∈ RegLθ̃ . So M := Lθ̃, σ, N := Lθ̄ and π′ := σ ◦ π̄, witness
that κ is θ-remarkable in L (definition (1.42) on page 20). This completes
the first part of the proof

The second part is a version of the argument for properness of reshaping
in [Sch00b], attributed there to [SS92]. It is similar to the arguments that
show that reshaping and K.U. are ω1-distributive or stationary-preserving.
The construction is the same for both forcing notions, so let P denote either
one of them. It suffices to show that there exists C, a cub subset of [Lω2 [A]]ω

such that ∀N ∈ C ∀p ∈ N ∩ P ∃q ≤ p ∀α̇ ∈ N , if p  α̇ ∈ On, then
q  α̇ ∈ N . The countable elementary submodels of 〈[Lω2 [A]]ω, P 〉 form a
cub set, so by taking the intersection, we can assume C? consists of such
models. Let N ∈ C?, p0 ∈ N be arbitrary. We show there is an N -generic
condition below p0.

Let π : Lβ[A ∩ α]
∼=−→ N ≺ Lω2 [A]]ω, where P, p0 ∈ N . We know

π(α) = ω1, crit(π) = α and β 6∈ RegL[A∩α], as N ∈ C?. As there are
no cardinals above α in Lβ[A ∩ α], L[A ∩ α] � β ∼= α. So let (α̇ξ)ξ∈α ∈
L[A ∩ α] be an enumeration of all π−1(P )-names α̇ in Lβ[A ∩ α] such that
Lβ[A ∩ α] �“π−1(P ) α̇ ∈ On”. Some easy consequences of elementarity:
(π(α̇ξ))ξ<α enumerates all α̇ ∈ N such that P α̇ ∈ On. Observe that
π−1(P ) = Lα[A ∩ α] ∩ P . Also, Lβ[A ∩ α] �“q π−1(P ) α̇ = λ̌” exactly if

q P π(α̇) = π(λ̌). Clearly,

Cξ := {η < α | (i) ∀p ∈ Lη[A ∩ η] ∩ P, p ≤ p0

∃q ∈ Lη[A ∩ η] ∩ P, q ≤ p

Lβ[A ∩ α] � “∃λ q π−1(P ) α̇ξ = λ̌”
(ii) p0 ∈ Lη[A ∩ η] }.

(21)

is cub in α. Clearly, each Cξ ∈ Lβ[A ∩ α]. Thus, C0 := 4ξ∈αCξ is cub and
C0 ∈ L[A ∩ α]. By thinning out C0 if necessary, we can assume

for all γ ∈ C0, if η is least in C0 above λ, then
Lη[A ∩ η] � γ ∼= ω

(22)

Now we build a countable chain of conditions, starting with p0 and working
in Lω2 [A], but picking conditions from Lβ[A∩α]. For this purpose, choose a
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bijection f : ω → α, and choose {βj|j ∈ ω}, a cofinal subset of C0 of order
type ω.

Assume we have chosen pn ∈ Lβn [A∩βn]. Let η be least in C0− (βn + 1).
By Corollary 4.4 (or 4.6 for K.U.) together with (22), we can pick p′n ≤ pn
in Lη[A ∩ η] such that

(p′n − pn) ∩ Lim = {βn}. (23)

Now we extend p′n to pn+1, working in Lη[A ∩ η], such that for all k
satisfying both k ≤ n and f(k) < η, pn+1 P π(α̇f(k)) = λ̌ for some λ ∈ N .
This is possible as η ∈

⋂
ξ<η Cξ and by (21). Of couse pn+1 ∈ Lβn+1 [A∩βn+1]

(as η ≤ βn+1). Observe that

(pn+1 − p′n) ∩ C0 = ∅. (24)

Now we finish the construction by setting p∞ :=
⋃
i∈ω pi. We claim p∞ is

an N -generic condition of P .
If p∞ is a condition at all, it is N -generic: for any ξ < α and m such

that both ξ ∈ f ′′m and ξ ≤ βm, pm π−1(P ) α̇ξ = λ̌ for some λ ∈ Lβ[A].

Hence pm  π(α̇ξ) = λ̌ for some λ ∈ N , and (π(α̇ξ))ξ<α enumerates all
ordinal-names that are elements of N .

To check that p∞ is a condition, we must treat Killing Universes and
Reshaping separately.

Case 1: P = Reshaping.
As usual, we restrict our attention to the non-trivial case and show L[A∩

α] � α ∼= ω. By (24) and (23), for each n ∈ ω,

(pn+1 − pn) ∩ C0 ∩ Lim = {βn},

and thus
p∞ ∩ C0 = {βn|n ∈ ω }.

As L[A∩α] � α ∼= β, this model contains the enumeration of the cub sets Cξ
of (21), whence C0 ∈ L[A ∩ α]. So L[A ∩ α, p∞] � α ∼= ω.

Case 2: P = Killing Universes.
We need to show: For all countable transitive M which are models of

�“∃ω1∧L[A∩ω1] � ¬∃ω2”, if ωM1 ≤ sup(p∞) and {A∩ωM1 , p∞∩ωM1 , ~p} ⊆M ,
then M �“∃λ ∈ CardL Lλ � ψ(~p)”. Again, we only consider the case ωM1 =
sup(p∞) = α. As there exists an elementary embedding from Lβ[A ∩ α] into
Lω2 [A], the same arguments as in the proof of lemma 4.7 show there exists
λ ∈ M with Lλ � ψ(~p), and also λ ∈ CardLβ [A∩α]. Again we need to show
LM∩On � λ ∈ Card. It suffices to show M ∩On ≤ β.

Assume otherwise. As LM∩On[A ∩ α] � ¬∃ω2, M ∩ On must be large
enough so that LM∩On[A ∩ α] � β ∼= α; but then, by the same argument as
in case 1, C0 ∈M and M � α ∼= ω, a contradiction.
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4.12 Corollary. [Fri] If Σ1
3-absoluteness holds for stationary-preserving set

forcing and ω1 is inaccessible to reals, ω1
V is reflecting in L.

Proof. If ω1 is remarkable in L, we are done by fact 1.43. By fact 1.45, we
can assume 0] does not exist. The rest is like the proof of theorem 4.3, but
when you pick a strong limit singular κ to collapse, at the beginning, make
sure there is a θ < κ witnessing that ω1 is not remarkable in L below κ. Then
all the forcing notions used in the proof are proper. In the last step, we need
to use the additional assumption that ω1 is inaccessible to reals.
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5 Forcing with the countable chain condition

5.1 Lightface Σ1
2-indescribable cardinals

Consider a language with variables of type k for each k ∈ ω. We say
Φ(X0, . . . Xk) is a Σm

n -formula if Φ starts with a block of quantifiers over
variables of type m or less, with n changes of quantifier, the first quantifier
being ∃, and only quantification over variables of type strictly less than m
occurs after that. Πm

n means negation of Σm
n . We define satisfaction for such

higher order formulas by induction on the order m: for a Σm
k formula Φ,

〈M,X0, . . . , Xk〉 � ∃Y0 . . . QYrΦ(Y0, . . . , Yr, X0, . . . , Xr)

(where Q denotes ∃ or ∀) exactly if

∃Y0 ∈ Pm(M) . . . QYr ∈ Pm(M)
s.t. 〈M,X0, . . . , Xk, Y0, . . . , Yr〉 � Φ(Y0, . . . , Yr, X0, . . . , Xr)

(Pm(M) denotes the m− th application of the power set operation); satisfac-
tion for Σ0

n-formulas is just normal first-order satisfaction (over a structure
with additional higher order predicates) extended to atomic formulas X ∈ Y ,
X = Y over the higher-order predicates so that they hold just if their obvious
interpretations hold.

We shall use this definition for the case m = 1; variables of type 1 shall be
distinguished from those of type 1 by using upper-case for the former, lower-
case for the latter. For the structures we consider, the usual translation
between sets and sets of ordinals goes through, so we shall assume that
second order variables range over sets of ordinals only.

We shall also make essential use of Σ1-definable Skolem functions for L
(see [Dev84, II, 6.]).

5.1 Definition. We say κ has the Σ1
2 reflection property if whenever Vκ �

∃X∀Y Φ(X, Y, p) for p ∈ Vκ (and first-order Φ), then there is ξ < κ such that
Vξ � ∃X∀Y Φ(X, Y, p). We say κ is (lightface) Σ1

2-indescribable if in addition
κ is inaccessible.

5.2 Fact. 1. If κ has said reflection property, it is a limit cardinal and is
not equal to 2λ for any λ < κ.

2. If there is a Mahlo cardinal, it is consistent that any cub class of ordinals
contains a Σ1

2-indescribable. The least Mahlo is not Σ1
2-indescribable.
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3. Reflecting implies Σ1
2-indescribable which in turn implies the existence

of many inaccessibles.

4. If P is a p.o. of size less than κ, then forcing with P preserves Σ1
2-

indescribability of κ.

Proof. 1. Express “there is no cofinal function from λ into the ordinals”
and “there is a bijection from P(λ) onto the ordinals” as second order
statements with parameter λ to get sentences that can’t be reflected.

2. Consider the function that assigns to every set M the least ξ such
that all formulas of a given class with parameters from M that hold
in any Vα already hold in some Vα with α < ξ. The closure points
under this function form a cub class in the ordinals (these closure points
have very strong reflection properties). Carry out this argument inside
the initial segment of the universe below a Mahlo to get a stationary
set of inaccessibles having the reflection property relativized to that
initial segment. To see that the least Mahlo cannot have the reflection
property, observe that κ being Mahlo is expressible by a Π1

1 statement
over Vκ.

3. For the first, observe Vα � ∃X∀Y Φ(X, Y, p) ⇐⇒ Hα+ � ∃x∀yHα �
Φ′(x, y, p), for some first-order formula Φ′. Secondly, being inaccessible
is expressible as a Π1

1 statement (f.e. the power set of any set exists and
can be mapped injectively into some ordinal and there is no function
with a set as domain but unbounded range).

4. Observe that if κ is inaccessible and |P | < κ, the elements of the (Hκ)
V P

and (Hκ+)V
P

are precisely the interpretations of the P -names in Hκ and
Hκ+ , respectively. Thus P“Vκ � ∃X∀Y Φ(X, Y, ṗ)” is equivalent to a
statement of the form ∃Ẋ ∈ Hκ+ ∀Ẏ ∈ Hκ+ Vκ �“P Φ′(Ẋ, Ẏ , ṗ)”,
where Φ′ is a first order expression in the parameter P ∈ Vκ, so the
whole statement is Σ1

2 over Vκ. So it holds with κ replaced by some
inaccessible ξ < κ, and therefore P“Vξ̌ � ∃X∀Y Φ(X, Y, ṗ)”

5.3 Fact. κ is lightface Σ1
2-indescribable ⇐⇒ κ is inaccessible and Hκ ≺Σ2

Hκ+ .

Proof. First assume indescribability. Let Hκ+ � ∃x∀yφ(x, y, p), where p ∈
Hκ. Pick a witness x0 in Hκ+ . For any transitive M of size κ containing
x0 and p, we have M � ∀yφ(x0, y, p). So Hκ+ � ∃x∀yφ(x, y, p) is equivalent
to a Σ1

2 assertion over Hκ, and thus is reflected by some Hξ, for inaccessible
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ξ < κ. Thus Hξ+ � ∃x∀yφ(x, y, p), and as Σ2 formulas are upwards absolute
for members of the H-hierarchy, Hκ � ∃x∀yφ(x, y, p). For the other direction,
let Hκ � ∃X∀Y φ(X, Y, p). Then Hκ+ thinks “there is a cardinal θ such that
∃x ⊆ θ∀y ⊆ θ, 〈Hθ, x, y〉 � (x, y, p)”. As “y = Hθ” is Π1 in y and θ, this is
seen to be a Σ2 statement in parameter p and so holds in Hκ.

5.4 Fact. If κ is lightface Σ1
2-indescribable, then it is both Σ1-Mahlo and

Π1-Mahlo. If “x ∈ C” is Σ2 over Hκ+ (with parameter in Hκ) for a cub
subset C of κ, then C contains an inaccessible.

Proof. The first assertion is clearly a consequence of the second; for the latter,
since Hκ ≺Σ2 Hκ+ , the argument given in 1.41 for reflecting cardinals goes
through.

5.2 Coding using an Aronszajn-tree

We fix the following notation: for a tree T , we denote by <T (or ≤T ) the
tree order, Tα denotes the α-th level of T and T � α denotes the subtree of
T consisting of all levels of height less than α. By pred(t) we mean of course
{t′ ∈ T |t′ <T t}. The following works for any Aronszajn-tree, that is, a tree
of height ω1 with countable levels and without any cofinal branches. Let T
be such a tree. Such a tree can be specialized by a ccc forcing, in the sense
that in the extension, there exists a function F from T into the rationals
which is order preserving (such F is called a specializing function). Once
a tree is specialized, it is impossible to add a cofinal branch without at the
same time collapsing ω1.

5.5 Lemma. If T is special (i.e. there exists a specializing function) and of
height ω1, T does not have a cofinal branch.

Proof. The image of a cofinal branch under F would be a set of rationals of
order type ω1.

A slight variation of the forcing that specializes T can be used to code a
subset of ω1 very efficiently, in a way that makes reshaping unnecessary. This
approach to coding was used in [HS85] to prove that MA together with “ω1

is inaccessible to reals” implies ω1 is weakly compact in L (weakly compact
cardinals are much stronger than reflecting). Lightface Σ1

2-indescribability
is an obvious weakening of weak compactness, which is equivalent to “bold-
face” Π1

1-indescribability and closely linked to two-step Σ1
3-absoluteness for

set forcing.
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5.6 Fact. Let S = (sα)α<ω1 be a sequence of reals. There is a ccc forcing P
that adds a real r such that in the extension the following holds: whenever M
is a transitive model of ZF− s.t. r ∈M , 〈T ≤T 〉 ∈M , we have (sα)α<ω1 ∈M .

Proof. To achieve this, we iterate the following notion of forcing: fix Q0, Q1,
two disjoint dense sets whose union is all rational numbers. For any sequence
S = (sα)α<ω1 consider P S

T consisting of all conditions f s.t.

1. f is a function with domain a finite subset of T × ω

2. for each n ∈ ω, the function t 7→ f(t, n) is a partial order preserving
mapping from (T,<T ) into the rationals

3. For any α < ω1, t at the ω ·α-th level of T and n ∈ ω, if (t, n) ∈ dom(f),
then f(t, n) ∈ Q0 if and only if n ∈ sα.

5.7 Lemma. Let F =
⋃
G, where G is generic. Then F is a function from

T into the rationals which is order preserving and continuous at limit nodes
of T ; moreover, for any α < ω1, and any t ∈ Tω·α, { n ∈ ω | F (t, n) ∈ Q0 } =
sα.

Proof. Clearly, D(t,n) := { p ∈ P S
T | (t, n) ∈ dom(p) } is dense for any (t, n) ∈

T×ω: given a condition p, there is an interval of possible values for p at (t, n)
(since p has finite domain), so if t is at level ω ·α of T , we can choose a value
from Q0 or Q1, depending on whether n ∈ sα or not. So F is a total, order
preserving function on T , and so the “moreover” clause holds by definition.
F is continuous as D(t,n),ε := { p ∈ P S

T | ∃t′ ∈ T |p(t′, n) − p(t, n)| < ε } is
dense for any n ∈ ω, ε > 0 and t at a limit level of T (again, by the finiteness
of the domain of any condition).

5.8 Lemma. P S
T is ccc.

Proof. Assume (pα)α<ω1 is an uncountable antichain; then {dom(pα)|α < ω1}
is an uncountable subset of [T × ω]<ω, so we can apply the delta-systems
lemma and assume that for each α, dom(pα) = r ∪ dα, where r, (dα)α<ω1 are
pairwise disjoint. Let us also assume that the dα all have the same cardinality
k. There are only countably many possibilities for the values of the pα on r,
so we assume that all the conditions agree on r. So for any α, α′ < ω1, there
is t ∈ dα, t′ ∈ dα′ and n ∈ ω such that pα ∪ pα′ is not order preserving on
{(t, n), (t′, n)}, whence in particular t and t′ are comparable in the tree order.
As any node of the tree has only countably many predecessors in the tree
order, by thinning out (pα)α<ω1 we can further assume that for all α, α′ < ω1,
there are t ∈ dα, t′ ∈ dα′ such that t <T t′ (find a function from ω1 to ω1

and consider closure points). Let us now enumerate the dα as t0α, . . . , t
k−1
α .
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We know that all the conditions in the antichain have comparable nodes in
their domain, we will now find a sufficiently coherent subset of conditions
to get a branch through T . Enlarge (using Zorn’s lemma or AC) the filter
of co-initial subsets of ω1 to an ultrafilter U (U contains only sets of size
ω1, i.e. U is uniform). For any α < ω1, we have { β < ω1 | ∃i, j tiα <T

tjβ } ∈ U . So by finite additivity of U , for each α, there are i, j such that

{ β < ω1 | tiα <T t
j
β } ∈ U . Moreover, there is an uncountable set I and i, j

such that the above holds for all α ∈ I. So for any α, α′ ∈ I, as elements of
U have non-empty (in fact large) intersection, there is β such that tiα <T t

j
β

and tiα′ <T tjβ, so tiα and tiα′ are comparable and (tiα)α∈I is an uncountable
branch through T .

Now we can prove fact 5.6. We build P as the finite support iteration
of (Pk)k∈ω. Let s0

α = sα; P0 is the forcing coding this sequence of reals
into a specializing function for T . At stage n, we have added a specializing
function Fn; let sn+1

α be a real coding Fn restricted to T � ω · (α + 1) × ω.
Pn+1 is the forcing for coding the sequence (snα)α<ω1 . Let r be a real coding
all reals (sk0)k∈ω; we check by induction on η ≤ ω1 that r has the property
promised in 5.6: assume that for all k, skη ∈M ; then for all k, Fk restricted to
T � ω·(η+1)×ω is contained in M . Let t ∈ Tω·(η+1)∩M 6= ∅; by the continuity
of the Fk and by lemma 5.7, n ∈ skη+1 exactly if sup({F (t′)|t′ <T t}) ∈ Q0;
so skη+1 ∈ M for all k. For limit η, using (skξ )k∈ω,ξ<η we can decode Fk on

T � ω · η inside M , and therefore as before skη ∈M for each k.

5.3 An equiconsistency

5.9 Theorem. “Σ1
3(ccc)-absoluteness together with ω1 inaccessible to reals”

has the consistency strength of a lightface Σ1
2-indescribable.

Proof. We work in L: let κ denote ω1
V and observe κ is inaccessible. Assume

that the reflection property fails: there is X? ∈ Lδ? such that for some
first order formula Φ (with parameter in Lκ, which we supress), 〈Lκ, X?〉 �
∀AΦ(X?, A), but for all ξ < κ there is A such that 〈Lξ, X? � ξ, A〉 � ¬Φ(X? �
, A). We now define a tree T and its ordering ≤T :

Elements of T are tuples (β,X), where β < κ and X ∈ δ2, for some δ,
and

1. Lβ = h
Lβ
Σ1

(|X| ∪X) (in particular, X ∈ Lβ)

2. X � |X| = X? � |X|
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3. for all ξ ≤ domX, there is A ∈ Lβ such that 〈Lξ, X � ξ, A〉 � ¬Φ(X �
ξ, A).

Define (β,X) ≤T (β̄, X̄) ⇐⇒ X ≤L X̄ and there is a Σ1-elementary
embedding σ : Lβ → Lβ̄ such that σ(X) = σ(X̄) and crit(σ) ≥ |X|. This can
be motivated by observing that branches correspond to a failure of reflection,
as will become clear in a moment.

Let’s check ≤T is a tree order. Clearly, ≤T is transitive and reflexive.
Also, ≤T is antisymmetric: let (β,X) and (β′, X ′) be a counterexample. As
X = X ′, the embedding witnessing (β,X) ≤T (β′, X ′) shows Lβ is isomorphic

to h
Lβ′

Σ1
(|X ′| ∪ {X ′}), but the latter is just Lβ′ , by item 1 above. It remains

to check that any two predecessors of a node are comparable: say (β,X),
(β′, X ′) ≤T (β̄, X̄), as witnessed by embeddings σ and σ′. Without loss of

generality assume X ≤L X ′, whence also |X| ≤ |X ′|. So ran(σ) = h
Lβ̄
Σ1

(|X| ∪
{X̄}) ⊆ h

Lβ̄
Σ1

(|X ′| ∪ {X̄}) = ran(σ′), whence (σ′)−1 ◦ σ is a well-defined
elementary embedding and so (β,X) ≤T (β′, X ′).

We now show T is a κ-Aronszajn tree, that is its level have size less
than κ, it has height κ but no cofinal branch (i.e. linearly ordered subset of
type κ). First observe that for a node (β̄, X̄) of T and a cardinal α ≤ β,
there is exactly one predecessor node of cardinality α. Existence: look at

the transitive collapse Lβ of h
Lβ̄
Σ1

(α ∪ {X̄}) and let X denote the image of
X̄ under the collapsing map (let σ denote the inverse of this map). Then

|X| = α, so Lβ = h
Lβ
Σ1

(|X| ∪ {X}). Item 3 holds for (β̄, X̄), so by a Skolem
hull argument, it also holds for (β,X). So (β,X) ∈ T . If α < |β|, X ≤L X̄,
and σ witnesses (β,X) ≤T (β̄, X̄). If α = |β| = |X|, by item 1, X = X̄
and β = β̄. Uniqueness: say (β,X), (β′, X ′) ≤T (β̄, X̄), and α = |β| = |β′|.
Then both 〈Lβ, X〉 and 〈Lβ′ , X ′〉 are ismorphic to h

Lβ̄
Σ1

(α∪{X̄}), so they are
identical. As a corollary we obtain that if (β,X) ∈ T and |β| = ωα, then
the height of (β,X) in T is exactly α. So T � α ⊆ Lωα and T is a κ tree.
For any α < κ, let X := X? � ωα and let Lβ be the transitive collapse of
H := hLκΣ1

(ωα∪{X}). It is easy to check that (β,X) ∈ T (for item 3, observe
that domX = ωα ∈ H) and we have seen its height is exactly α, so T has
height κ.

5.10 Lemma. T does not have a cofinal branch in V .

Proof. Else, let (β(α), X(α))α<κ be such a branch, let σᾱα : Lβ(α) →Σ1 Lβ(ᾱ)

be the embedding witnessing (β(α), X(α)) ≤T (β(ᾱ), X(ᾱ)). A simple argu-
ment involving the Σ1-definable Skolem function shows that for α < α′ < ᾱ,
σᾱα′ ◦ σα

′
α = σᾱα. As κ has uncountable cofinality, the direct limit of this chain

of models is well-founded and a model of V = L, therefore isomorphic to
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some Lδ. Each Lβ(α) is Σ1-elementarily embeddable into Lδ via a map that
is the identity on |β(α)|L, and all the X(α) are mapped to one X0 which
must therefore end-extend X? (in the sense that X0 � κ = X?). So δ > κ (as
X0 ∈ Lδ). By elementarity (and condition 3 in the definition of T ), there is
A ∈ Lδ such that 〈Lκ, X0 ∩ κ,A〉 � ¬Φ(Xδ ∩ κ,A), contradiction.

Let’s go back to working in L again, for yet a little while. T is not
pruned (there are dying branches and branches that don’t split), and T
needn’t even have unique limit nodes (in the sense that for t and t′ at a limit
level Tλ, if t and t′ have the same predecessors, then t = t′). The latter
shortcoming has to be remedied, and this is accomplished easily by replacing
T by T ′, where T ′α+1 = Tα for any α < κ, while for limit ordinals λ we set
T ′λ = {pred(t)|t ∈ Tλ}. T ′ carries the obvious order (t ≤T z′ exactly if either
t ⊆ t′ or t ∈ t′ or t ⊆ pred(t′) or t ≤T t′).

Pick E such that

1. 〈κ,E〉 ∼= 〈Lδ? ,∈〉 and

2. X?(ξ) = 1 ⇐⇒ (ξ + 1) E ∅.

Define C := {ξ < κ|ξ is a cardinal and 〈Lξ, X?∩ξ, E∩ξ〉 ≺ 〈Lκ, X?∩ξ, E∩ξ〉}.
By inaccessibility of κ this is a cub set.

Let C be enumerated as (cξ)ξ<κ. Now we work in V : let sξ code (via the
transitive collapse) (Tξ+1, X

? � cξ, E ∩ cξ). Now we apply the forcing just
described (fact 5.6) to code the sequence S = (sξ)ξ<ω1 into a single real r,
using T .

Now let β < κ and Lβ[r] be a model of ZF− ∧ ∃ω1, and say α = ω
Lβ [r]
1 .

We claim that for some ξ ≤ α, there is x ∈ Lβ such that for all a ∈ Lβ,
〈Lξ, x, a〉 � Φ(x, a), i.e. that from the point of view of Lβ, reflection occurs
before ω1. Assume otherwise; we show how to recursively reconstruct (sξ)xi≤α
inside Lβ[r]. This is a contradiction as sα ∈ Lβ[r] means α is countable in
that model. We construct (sξ)xi≤η by recursion on η ≤ α. s0 ∈ Lβ[r] is
immediate. Now say η = γ + 1: so (sξ)xi≤γ ∈ Lβ[r], so T � γ + 2 ∈ Lβ[r],
so using the specializing functions on that tree we get sγ + 1 ∈ Lβ[r]. In the
remaining case, where η is limit: by induction hypothesis, (sξ)ξ<η ∈ Lβ[r]. So
T � η =

⋃
ξ<η Tξ+1 is in Lbeta[r], and in fact, all of its elements are countable

there. Likewise, X? � cη, E ∩ cη ∈ Lβ[r]. Ecapcη is of course a well founded
relation, and by the definition of C and elementarity, it is isomorphic to some
Lδ? such that X? � cη ∈ Lδ? and δ? < β. So since cη ≥ ωη, X � ωη ∈ Lβ
(to be sure we didn’t use any information not accessible in Lβ[r], we feel we
should mention the triviality that (ωη)

L = (ωη)
Lβ). By assumption, there

is a ∈ Lβ such that Lωη � ¬Φ(X? � ωeta, a). Therefore, by definability of
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Σ1-Skolem function and replacement in Lβ, we can look at the collapse Lβ?

of hLβΣ1
(ωeta ∪ {X? � ωeta}), β? < β. Clearly, (β?, X? � ωeta) ∈ T (and its

height is at least η; the only thing of substance to check for membership in T
is item 3 in the definition of T ). As all predecessor nodes of T are countable
in Lβ[r], ≤T on T � η+1 (which involves finding an embedding of structures)
is absolute for Lβ[r] (see lemma 1.6). So Lβ[r] can use (β?, X? � ωeta) ∈ T
to find a branch though T � η and by continuity of the ranking functions,
sη ∈ Lβ[r].

So we have found, after forcing with a ccc partial order, a real r with the
Σ1

3 property

∀β < ω1, if Lβ[r] � ZF− ∧ ∃ω1, then
∃α ≤ (ω1)Lβ [r] such that (Lα � ∃X∀AΦ(X,A))Lβ

So we may assume that r is in the ground model. But since ω1 is inaccessible
to reals, we may look at β := (ω2)L[r]. By the above, for some α ≤ (ω1)Lβ [r],
(Lα � ∃X∀AΦ(X,A))Lβ, and therefore (Lα � ∃X∀AΦ(X,A))L. This com-
pletes one direction of the proof.

For the other direction, assume κ is inaccessible and lightface Π1
2 - inde-

scribable. We show that after gently collapsing κ to ω1, Σ1
3(ccc)-absoluteness

holds and κ is inaccessible to reals. The latter is clear, as any real in the
extension can be absorbed into an intermediate model where κ is still inac-
cessible.

In V Coll(ω,κ), let P be a ccc (i.e. κ−cc) p.o. that forces a Σ1
3(r) statement

φ(r), r ∈ V Coll(ω,{α}), for some α < κ. Firstly, we can assume that P ∼= κ:
write φ(r) as “there is a real x such that a certain tree T (x) on ω1 (which is
∆1(x, r, ω1)) is well-founded”. So P “∃ẋ s.t. T (ẋ) is well-founded”. As P
has the κ − cc, there is ξ < κ+ such that P rank(T (ẋ)) < ξ̌. Thus there
is a name Ḟ for a ranking function on T (ẋ), Ḟ ∼= κ. Now “Ḟ is a ranking
function on T (ẋ)” is a first order statement over the structure 〈P, Ḟ , ẋ〉 and
thus also holds for an elementary submodel P ′ of size κ, containing Ḟ and
ẋ. This proves we can assume P ∼= κ. For the moment, we work in W :=
V Coll(ω,{α}). We have that for Q := Coll(ω, κ) ∗ P , Q  φ(r), Q is of size κ
and has the κ-cc. The fact that there exists such a Q can be expressed in a
Σ1

2 way, over Vκ: as Q ∼= κ, w.l.o.g. we may assume Q ⊂ Vκ. Let Ψ(A,Q) be
first order in the predicates Q, A, saying “if A is an antichain of Q, A is equal
to some set”, and let Θ(Q, r) be first order in the predicate Q and parameter
r saying “ φ(r)”. We have that Vκ � ∃Q ∀A Ψ(A,Q) ∧ Θ(Q, r). By
fact 5.2, κ still is Σ1

2-indescribable (in W ) so there is an inaccessible ξ < κ
reflecting this second order statement. So there is Q ∼= ξ s.t. Vξ �“Q
φ(r)”, but as Vξ � ∀AΘ(Q,A)), Q has the ξ-cc and thus Q φ(r) is absolute
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between Vξ and V : φ mentions only reals, and all reals of the extension via
Q have names in Vξ; and once all quantification over names is removed from
Q φ(r), only quantifiers ranging over Q ⊂ Vξ remain. Thus, in W , there
is Q ∼= ξ forcing φ(r). So by corollary 1.30, φ(r) is forced by the gentle
collapse of κ over W , and this means that, if ṙ is some Coll(ω, κ)-name for
r, Coll(ω, κ) ∼ Coll(ω, {α}) ∗ Coll(ω, κ) forces φ(ṙ) over the ground model.
So φ(r) holds in V Coll(ω,κ), whence Σ1

3-absoluteness holds between this model
and any subsequent ccc extension.

47



References

[BJW82] A. Beller, R. B. Jensen, and Ph. Welch. Coding the universe.
Cambridge, 1982.

[Dev84] K. J. Devlin. Constructibility. Springer-Verlag, 1984.

[DJ75] K. J. Devlin and R. B. Jensen. Marginalia to a theorem of Silver.
In ISILC Logic Conf., number 499 in Lecture Notes in Math.,
pages 115–142. Springer-Verlag, 1975.

[FB01] S. D. Friedman and J. Bagaria. Generic absoluteness. Annals of
Pure and Applied Logic, 108:3–13, 2001.

[FMW92] Q. Feng, M. Magidor, and H. Woodin. Universally baire sets of
reals. In H. Judah et al., editor, Set theory of the continuum, pages
407–416. Springer-Verlag, 1992.

[Fri] S. D. Friedman. Generic Σ1
3 absoluteness. To appear.

[HS85] L. Harrington and S. Shelah. Some exact equiconsistency results
in set theory. Notre Dame Journal of Formal Logic, 26(2):178–188,
1985.

[Jec78] T. J. Jech. Set Theory. Academic Press, 1978.

[Kan97] A. Kanamori. The Higher Infinite. Springer, 1997.

[Kun80] K. Kunen. Set Theory. An Introduction to Independence Proofs.
North Holland, 1980.

[Sch00a] R.-D. Schindler. Coding into K by reasonable forcing. Transac-
tions of the American Mathematical Society, 353(2):479–489, 2000.

[Sch00b] R.-D. Schindler. Proper forcing and remarkable cardinals. The
Bulletin of Symbolic Logic, 6(2):176–184, 2000.

[SS92] S. Shelah and L. Stanley. Coding and reshaping when there are
no sharps. In H. Judah et al., editor, Set theory of the continuum,
pages 407–416. Springer-Verlag, 1992.

48


