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What we talk about when we talk about R

Joke
What’s a set theorist? Someone who doesn’t know what the real
numbers are.

David Schrittesser (KGRC) Regularity properties København, Jan 2014 2 / 37



What we talk about when we talk about R

Most of what follows works for any uncountable Polish space X (they
are all Borel isomorphic).

When I say “the reals” I might mean any of these spaces:
ωω = NN, the Baire space. ω<ω = the finite sequences.
2ω = 2N, the Cantor space. 2<ω as above.
R
[ω]ω, the infinite subsets of ω = N. [ω]<ω = finite subsets.
Identify [ω]ω with

ω↑ω, the increasing functions f : ω → ω (isomorphic to ωω);
or with a (Gδ) subset of P(N) = 2ω (characteristic functions).

Some constructions do require to work in a specific space.

David Schrittesser (KGRC) Regularity properties København, Jan 2014 3 / 37



Projective Hierarchy

Let X be a Polish space.

Σ1
1 = analytic = continuous images of Borel sets

Π1
n = all complements of Σ1

n sets;

Σ1
n+1 = all continuous images of Π1

n sets;

∆1
n = Π1

n ∩Σ1
n

Σ1
ω =

⋃
n∈ω

Σ1
n
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Projective Hierarchy, logically

In ωω, we may also see the projective hierarchy in terms of definable
sets, by counting quantifiers over “reals”:

Call Ψ(x) a Σ1
n formula iff it is of the form

Ψ(x) ≡ (∃f1 ∈ ωω)(∀f2 ∈ ωω) . . . ( ∃∀ fn ∈ ωω)Φ(f1, f2, . . . , fn, x ,g)

where Φ is in the language of arithmetic (say), contains only quantifiers
over natural numbers and has g ∈ ωω as a parameter.

A set A is Σ1
n iff it is definable by a Σ1

n formula Ψ(x), i.e.

A = {x ∈ ωω | Ψ(x)}

Similarly for Π1
n etc.

Something similar can be done for any Polish X.
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Our main examples: measure and category

Two equivalent forms of measurability and the Baire-property:

X ⊆ X is measurable (LM)

⇐⇒ X = B∆N where B Borel (or Fσ, or Gδ), N null
⇐⇒ for every non-null closed C there is a non-null closed C′ ⊆ C
s.t. C′ ∩ X is null or C′ ⊆∗ X

X ⊆ X has the Baire property (BP) :
⇐⇒ X = B∆M, where B is Borel (or open), M meager
⇐⇒ ∀p basic open ∃q ⊆ p basic open s.t. q ∩ X is meager or
q ⊆∗ X
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Example: Marczewski-measurable

Another regularity property is being Marczewski-measurable.

Definition
X ⊆ X is Marczewski-measurable ⇐⇒
for every perfect C there is a perfect C′ ⊆ C such that C′ ⊆ X or
C′ ∩ X = ∅.

Measurable sets form a σ-algebra containing the analytic sets.
There’s an associated σ-ideal of Marczewski-null sets:

Definition
X ⊆ X is Marczewski-null ⇐⇒
for every perfect C there is a perfect C′ ⊆ C such that C′ ∩ X = ∅.

(same as being countable for Borel sets)
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Example: completely Ramsey

Another regularity property is being completely Ramsey.

Work in X = [ω]ω (the infinite subsets of ω).

For s ∈ [ω]<ω and U ∈ [ω]ω, let

[s,U] = {X ∈ [ω]ω | s ⊆end X ⊆ s ∪ U}.

s ⊆end X means s ⊆ X and max(s) < min(X \ s).

These are perfect (in the subspace topology)

They form a basis for the Ellentuck topology on X
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Example: completely Ramsey

Definition
X ⊆ X is completely Ramsey ⇐⇒ X has the Baire-property with
respect to the Ellentuck topology.

Two equivalent forms:
for any s ∈ [ω]<ω and U ∈ [ω]ω, there is V ∈ [U]ω s.t. either
[s,V ] ⊆ X or [s,V ] ∩ X = ∅.
∀[s,U] ∃[t ,V ] ⊆ [s,U] s.t. either [t ,V ] ⊆ X or [t ,V ] ∩ X = ∅.

The completely Ramsey sets form a σ-algebra containing the
analytic sets (Silver 1970)...
...with an associated σ-ideal of Ramsey-null sets
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Regularity notions: a general approach

Say P ⊆ P(X) consists of closed subsets of X. Think of P as a partial
order, ordered by ⊆.

We can define P-regular (also called P-measurable):

Definition
For X ⊆ X

1 X is in IP ⇐⇒ ∀C ∈ P ∃C′ ∈ P s.t. C′ ⊆ C and C′ ∩ X = ∅.
2 The ideal of P-null sets (NP) is the σ-ideal generated by IP .
3 X is P-regular ⇐⇒ ∀C ∈ P ∃C′ ∈ P s.t. C′ ⊆ C and (C′ ⊆∗ X

or C′ ⊆∗ X \ X ).

(⊆∗ denotes inclusion modulo a P-null set)
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The examples revisited (say X = ωω)

1 P = C, the basic clopen sets:
X is in IP ⇐⇒ X is nowhere dense ⇐⇒
∀C ∈ C ∃C′ ∈ C s.t. C′ ⊆ C and C′ ∩ X = ∅.
X ∈ NP ⇐⇒ X is meager.
X is C-regular ⇐⇒ X has BP ⇐⇒
∀C ∈ C ∃C′ ∈ C s.t. C′ ⊆ C and (C′ ⊆∗ X or C′ ⊆∗ X \ X ).

2 X is LM ⇐⇒ ∀C ∈ B ∃C′ ∈ B s.t. C′ ⊆ C and (C′ ⊆∗ X or
C′ ⊆∗ X \ X )
(P = B, the positive closed sets)

3 X is compl. Ramsey ⇐⇒ ∀C ∈ R ∃C′ ∈ R s.t. C′ ⊆ C and
(C′ ⊆∗ X or C′ ⊆∗ X \ X )
(P = R, the Ellentuck basis sets)

In the last two cases ⊆∗ can be replaced by ⊆ (by a special property of
these P, called fusion).

David Schrittesser (KGRC) Regularity properties København, Jan 2014 11 / 37



In practice we usually consider X = ωω or X = 2ω.

Given a tree T ⊆ ω<ω (resp. 2ω), let

[T ] = {x ∈ ωω | all initial segments of x belong to T}.

Then T 7→ [T ] is a bijection between (pruned) trees and closed sets.

Thus we can assume P in the above consists of perfect trees, ordered
by ⊆.

Any partial order 〈P,≤P〉 is also called a forcing.
Forcings like the the ones discussed above are called “arboreal”.
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More examples

Arboreal forcing Regularity
property

P consists of...

S (Sacks) Marczewski perfect trees on 2<ω

V (Silver) Doughnut uniform perfect trees on 2<ω

M (Miller) superperfect tree on ω<ω (infinite
splitting)

L (Laver) every node above stem splits in-
finitely

B (Random) LM perfect T s.t. µ([T ]) > 0
C (Cohen) BP full tree above stem (basic clopen)
R (Mathias) compl.

Ramsey
Ellentuck basis sets

Other examples: D (Hechler), Matet, eventually different forcing, . . .
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Quick Overview:

For the first part of this talk, we shall not distinguish between notions of
regularity.

all analytics Σ1
1 sets are regular (LM, BP, Ramsey, . . . ).

This is all that can be proven in ZFC:
There is a model of ZFC, L, where regularity fails for ∆1

2 sets
(1930ies)
Assuming an inaccessible cardinal, we can find model of ZFC
where all projective sets are regular (Solovay’s model, 1970).
The inaccessible can be shown to be necessary for this (Shelah
1984).
regularity can be characterized by transcendence over inner
models (such as L); (Solovay 1979... ongoing research).

Stronger axioms (projective determinacy, existence of Woodin
cardinals) prove that all projective sets are regular.
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Gödels constructible universe

L is an inner model of set theory, that is a definable class.
minimal: L ⊆ M for any class model M of ZFC
absolute: If M ⊆ N are class models of ZFC, LM = LN

GCH holds in L, i.e. 2κ = κ+ for all cardinals κ
L has a definable global well-order ≤L

≤L is a Σ1
2-good well-order on 2ω

Given a set X , we can form L(X )

L(X ) is the least model M of ZF s.t. X ⊆ M
L(X ) is also absolute
L(X ) needn’t be a model of AC (can fail in L(P(ω)) = L(R))
If x ∈ 2ω, L[x ] = L({x}) has the same nice properties as L.
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Recall that a X ⊆ X is a Bernstein set ⇐⇒ both X and X \ X
intersects every uncountable closed set.

Fact
For any standard notion of regularity, a Bernstein set is not regular.

Proof.
Being P-measurable requires to be disjoint from or contain some
C ∈ P; and C is perfect.

Theorem (Gödel)

In L, ≤L yields a Σ1
2-good well-order of ωω, i.e. the set of (x , ~z) such

that ~z “enumerates” {y ∈ ωω | y ≤L x} is Σ1
2.

Corollary

In L, there is a ∆1
2 Bernstein set, so the ∆1

2 sets aren’t regular.
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Intro: Large cardinals - ‘Strong axioms of infinity”

General form: there is a cardinal with such and such properties.
Existence of large cardinals is NOT provable in ZFC
They form a hierarchy of stronger and stronger axioms...
...proving more about V and allowing to construct more models
(inner models or forcing extensions).

Examples:

inaccessible < Mahlo < measurable < Woodin cardinals

where < means, e.g.

Con(ZFC+“∃ a Mahlo”)⇒ Con(ZFC+“∃ an inaccessible”)

Note: Con(ZFC+“∃ an inaccessible”)⇒ Con(ZFC)
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Intro: Forcing

Let 〈P,≤p〉 be a quasi-order (transitive, reflexive), and M be a model of
ZFC.

Definition
D ⊆ P is dense ⇐⇒ ∀p ∈ P ∃q ∈ D q ≤P p.
G ⊆ P is (M,P)-generic ⇐⇒ ∀D ∈ M s.t. D ⊆ P dense, D ∩G 6= ∅.

We can form an extension, called MP or M[G] ⊃ M containing an
(M,P)-generic G
M can be e.g. L or V = the universe of all sets
Of course, this involves “meta-mathematical” fine-points
By careful choice of P, we may be able to “force” a statement Φ to
hold in M[G]

We have found a model of set theory where Φ holds (and so ZFC
does not prove ¬Φ).
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Examples: Forcing

If we force over M with one of the P mentioned earlier, we obtain a
P-generic real r in M[G] s.t.

{r} =
⋂
{CM[G] | C ∈ G}

(remember C = [T ] is a closed set, so it has a “description” T which
can be interpreted in M[G]) and G = Gr = {C ∈ P | rG ∈ C}.

Vice versa, a real r such that Gr is P-generic over M is called a
P-generic over M (or a Cohen real, random real, Sacks real etc).

Fact
If r is P-generic over M ⇒ for any Borel B ∈ M which is co-P-null in M,
r ∈ BV [G].

⇐ holds for random and Cohen, but fails e.g. fails for Silver and Sacks
forcing.
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Transcence principles for n = 2

Theorem (Judah-Shelah 1989)

∆1
2(C) ⇐⇒ (∀r ∈ ωω)(∃s ∈ ωω) s.t. s is (L[r ],C)-generic.

∆1
2(B) ⇐⇒ (∀r ∈ ωω)(∃s ∈ ωω) s.t. s is (L[r ],B)-generic.

More theorems (Solovay, 1970; Brendle, 1999)

Σ1
2(C) ⇐⇒ (∀r ∈ ωω){ s.t. s is not (L[r ],C)-generic } co-meager.

Σ1
2(B) ⇐⇒ (∀r ∈ ωω){ s.t. s is (L[r ],B)-generic } co-null.

Σ1
2(S) ⇐⇒ (∀r ∈ ωω)(∃s ∈ ωω) s.t. s 6∈ L[r ].

Σ1
2(M) ⇐⇒ (∀r ∈ ωω)(∃s ∈ ωω) unbounded overL[r ].

Σ1
2(L) ⇐⇒ (∀r ∈ ωω)(∃s ∈ ωω) dominating overL[r ].

Ikegame (2012) showed there is a uniform-in-P version of these,
involving an ideal I∗P and a notion of quasi-generic reals (e.g.
dominating; same as generic for Cohen and random).
He also showed there are analogues (replacing L with core
models) for n > 2 assuming relatively large cardinals.
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Solovay’s model

Theorem (Solovay, 1970; Mathias, 1977; others)
Assume there is an inaccessible cardinal. Then there is a partial order
Coll such that in V [G], every projective set is regular.

Also: in L(R)V [G], all sets are regular (AC fails).
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Rough sketch of proof 1

Let κ be inaccessible. Let Coll = set of finite partial functions
f : κ× ω → κ such that f (α,n) < α; ordered by ⊆ (extension).

It’s easy to see that κ becomes ω1 in V [G].

In V [G], let A ⊆ X, defined by the Σ1
n formula Ψ(x), and C ∈ P be

given. We must find C′ ⊆ C such that C′ ⊆∗ A or C′ ∩ A ∈ NP .

For simplicity assume C = X (and that Ψ(x) is without parameter).

Basic fact
When forcing, P may be replaced by its Stone space, St(P), a
complete Boolean algebra. For every formula Φ(x), we may define
‖Φ(x)‖ ∈ St(P) such that

Φ(x) holds in M[G] ⇐⇒ ‖Φ(x)‖ ∈ G
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Rough sketch of proof 2

Property A of Coll
In V [G], Coll has added a co-P-null set of P ∩ V -generic reals ⊆ C for
every C ∈ P.

Pick a P-generic r and assume without loss of generality r ∈ A.
By a general fact, St(P) is a complete sub-algebra of St(Coll) (their
Stone-spaces).

Property B of Coll
If A and B are two isomorphic small subalgebras of Coll, there is an
automorphism f of St(Coll) such that f [A] = B.

By “mixing,” it follows that ‖Ψ(r)‖Coll = ‖Ψ(r)‖St(P) ∈ St(P). As P is
dense in St(P), we can find C′ ∈ P s.t. C′ ≤P ‖Ψ(r)‖.
This means that every (V ∩ P,V )-generic real r ′ ∈ C′ will satisfy Ψ(r ′)
in V [G]. By property A, we are done. (End of sketch.)
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Games and regularity

Recall the Banach-Mazur game Gω(X ), for X ⊆ ωω:
Players take turns picking basic open sets Uk in ωω, for k ∈ ω, such
that Uk+1 ⊆ Uk . Player I wins if ∅ 6=

⋂
k Uk ⊆ X , Player II wins

otherwise.

I has a winning strategy⇒ X is co-eager on an open set.
II has a winning strategy⇒ X is meager.

“Unfolded” version of the Banach-Mazur game shows:

Π1
n-determinacy⇒ Σ1

n+1(BP)

Löwe (1996) describes in great generality how such games can be
used to show:

Fact
Π1

n-determinacy⇒ Σ1
n+1(P) for all our P.

This also gives a uniform proof that all Σ1
1 sets are regular.
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The end of independence

Theorem (Martin-Steel, 1989)

Let n ≥ 1. If there are n Woodin cardinals, Π1
n+1-determinacy holds,

hence all Σ1
n+1 sets are regular.

Corollary (Martin-Steel, 1989)
If there are infinitely many Woodin cardinals, projective determinacy
holds. Hence all projective sets are regular.

Thus, the question of separating regularity properties becomes
vacuous if we agree to admit this large cardinal axiom as a de-iure
axiom in set theory.
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Unsatisfying consistency results

Theorem (?)
If there is a measurable cardinal, there is a model L[U] in which there
is a ∆1

3-good well-order of ωω and Π1
1-determinacy holds.

So in L[U] we have Σ1
2(P) + ¬∆1

3(P) for all P.

But models with Σ1
2(P) + ¬∆1

3(P) for all P can be found from just an
inaccessible.

Theorem (Martin-Steel)
Let n ≥ 1. If there are n Woodin cardinals, there is a model Mn in
which there are n Woodin cardinals and a ∆1

n+2-good well-order of ωω.
So in Mn we have Σ1

n+2(P) + ¬∆1
n+3(P) for all P

Models with Σ1
n+2(P) + ¬∆1

n+3(P) should also be obtainable from just
an inaccessible (but currently aren’t)!
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Separating notions of regularity

There are some ZFC implications, e.g. (Bartoszinski-Raisonnier)

Σ1
2(LM)⇒ Σ1

2(BP)

Initially the interest was separating LM from BP:
Shelah first separated BP and LM, by showing Σ1

ω(BP) 6⇒ Σ1
ω(LM).

For the other direction, Judah, Bagaria, and Woodin obtained
partial results for n < 4.
In a joint work with Sy Friedman, I showed Σ1

ω(LM) 6⇒ Σ1
ω(BP).

for n < 4, almost everything is solved for all above P (by the
transcendence method) (Fischer-Friedman-Khomskii, 2013).
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Separating category from measure: Amalgamation 1

Theorem 1 (Shelah 1984)
Any model of ZFC V has an extension V [G] where every projective set
has the Baire-property.

Note that you don’t need large cardinals!
Idea: imitate Solovay’s proof by building a forcing which has
automorphisms (property B) for St(C), i.e. Cohen sub-algebras.
To build such a forcing Shelah invented amalgamation

Theorem 2 (Shelah 1984)

If every Σ1
3 set is measurable, ω1 is inaccessible in L.

This is shown using a rapid filter.

David Schrittesser (KGRC) Regularity properties København, Jan 2014 28 / 37



Separating category from measure: Amalgamation 2

Theorem 1
Any model of ZFC V has an extension V [G] where every projective set
has the Baire-property.

Theorem 2
If every Σ1

3 set is measurable, ω1 is inaccessible in L.

Corollary
There is a model where every projective set has BP, but there is a
projective set without LM.

Proof.
Let V = L and there assume is no inaccessible. Go to the model L[G]

provided by the first theorem. By assumption ωL[G]
1 is not inaccessible

in L, so in L[G] there is a Σ1
3 set which is not measurable.
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Separating by consistency strength

Note: there are two types of notions of regularity:

1 those equiconsistent with ZFC (a model for Σ1
ω(P) can be found from

just ZFC, as for BP)
2 those equiconsistent with an inaccessible (a model for Σ1

ω(P) cannot
be found from just ZFC, as for LM)

Long standing open question
What is the situation for Mathias forcing R (i.e. for the notion of being
completely Ramsey) and for Laver forcing L?
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Separating measure from category

Theorem (Friedman-S.)

Assume a Mahlo cardinal. Consistently, Σ1
ω(B) ∧ ¬∆1

3(C)

Σ1
3(B)⇒ ω1 is inaccessible in L (Shelah).

This in turn implies Σ1
2(C), by one of the transcendence principles,

see below.
So the complexity of the irregular set is optimal.
The proof uses a different amalgamation method and Jensen’s
“coding of the universe by a real” in a localized version.
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ZFC Implications

The following implications hold in ZFC:

Γ(B) +3 Γ(V) +3 Γ(S)

Γ(R)

9A

+3 Γ(L) +3 Γ(M)

9A

Γ(C)

T\

KS

Let’s call the above “Cichon’s diagram for regularity”.

Σ1
2(P) = ∆1

2(P) for P ∈ {R,L,M,S}

Σ1
2(B)⇒ Σ1

2(C)⇒ Σ1
2(V)⇒ Σ1

2(M)

Disclaimer: not a complete list.
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n < 4 and the transcendence method

For ∆1
n and Σ1

n when n < 4, Fischer-Friedman-Khomskii (2013) have
found models for almost every situation not excluded by known ZFC
implications.

They list a few open questions, among them:

Open question

Does ∆1
2(L)⇒ Σ1

2(V)?
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n = ω: Generalizing Friedman-S.

Theorem (Brendle?)
There is a model (where AC fails) in which all sets are V-regular, but
not all sets are B-regular.

The model is obtained by a standard forcing extension adding many Cohen
reals to L (the “Cohen model”); (the status of the other notions is currently
unclear in this model).
The general method to prove such results should be amalgamation, as in the
following result:

Theorem (Laguzzi, 2012)
If there is an inaccessible, we can find a model where all sets are V-regular,
but not all sets are P-regular for each of P ∈ {M,B} (and ω1 is inaccessible in
L).

Observe that by Cichon’s diagram, this determines which sets in the
projective hierarchy are regular for all the listed notions.
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n = ω: Generalizing Friedman-S.

To use a amalgamation to separate P0 from P1-regularity, one needs to
show they add very different kind of reals.

E.g. Random forcing adds no unbounded reals, while Cohen reals are
unbounded over V .

Laguzzi found Silver forcing doesn’t add unreachable reals, while Miller
and Random reals are unreachable over V .

We can turn this into a projective result:

Theorem
Assume a Mahlo. There is a model V [G] of ZFC in which we have

Σ1
ω(V) + ¬∆1

3(M) + ¬∆1
3(B)
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Two more questions:

Let me conclude with two more open questions:
1 How can we “separate” other notions of regularity? E.g. for Silver

and Sacks, if applicable, our method would yield a model of

Σ1
ω(S) + ¬∆1

3(V)

2 Can we force, from modest large cardinal assumptions

Σ1
7(C) + ¬Σ1

8(C)

In a model with just the right finite number of Woodin cardinals,
Σ1

7(P) + ¬∆1
8(P) holds for all P. But something of the order of an

inaccessible should suffice to find a model of it (a forcing
extension).
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Thank You!
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